

JSON and jq Quick Start Guide v1.2

SANS Institute
digital-forensics.sans.org

by Phil Hagen & David Szili
lewestech.com | alzetteinfosec.com

Purpose
This guide is a supplement to SANS FOR572: Advanced
Network Forensics and Analysis. It covers the basics of JSON
and some of the fundamentals of the jq utility. The jq utility
filters, parses, formats, and restructures JSON—think of it as
sed, awk, and grep, but for JSON. Given the trend toward
logs being generated in JSON, easily accessing and molding that
data is increasingly important for the forensicator.
This document is not intended to replace jq’s extensive
documentation. It is only a quick reference resource.

Acquiring the jq Utility
Stephan Dolan is the developer of jq, which is free and open-
source software. You can install jq in most *NIX-based
operating systems using the distribution’s software/package
management system, or you can download the binary for your
operating system or the source code from the main project page.
Visit for572.com/jq for details, as well as to learn how to
contribute to the project through the author’s GitHub repository.
A web-based version of jq is hosted at jqplay.org. This is
especially helpful while learning jq, as you can experiment with
filters and options in a graphical interface. The jqplay.org
web implementation can also be hosted in your own
environment, making it suitable for air-gapped networks.

Accessing Array Elements
To access a particular element from an array, familiar
[<element_number>] notation is used. Remember that
array indices are zero-based.
 $ jq '.answers[0]' dns.log
 "vhost1.identityvector.com"

Accessing Nested JSON Objects
Nested objects can be accessed by using the dot separator. While
the sample Zeek dns.log entry does not contain these, the
below example uses the original JSON object from this handout
with the shell’s pipe operator to show that like many other
command-line tools, jq can be used with data on STDIN instead
of a file.
 $ echo '{ "name": "Lance", ⏎
 "age": 42, "active": true, ⏎
 "tags": ["tag1", "tag2"], ⏎
 "address": { "street": "123 Main", ⏎
 "city": "Lewes", "state": "DE", ⏎
 "postalCode": "19958"}, ⏎
 "pet": null }' | ⏎
 jq '.address.city'
 "Lewes"

Complex Filtering: Build New JSON Objects
To select more than one field, the syntax reflects assembling a
new JSON object. No leading dot is used in this filter syntax.
Note that the -r option has no effect.
 $ jq '{ "id.orig_h", query }' dns.log
 {
 "id.orig_h": "192.168.75.169",
 "query": "www.sansgear.com"
 }

This handout is built as a tri-fold document, with panel order denoted
by the numbers at the bottom of each column.

Selecting Records Based on Content
By default, jq will process all JSON objects in the input data
set. Using the select operator allows you to limit the records
processed based on their values.
 $ jq 'select(.rcode_name == "NOERROR")'

This command will produce all records with a value of
“NOERROR” in the rcode_name field.

The additional operators contains, startswith, and
endswith are also useful ways to select records.

 $ jq 'select(.query | ⏎
 contains("sans"))' dns.log
 $ jq 'select(.query | ⏎
 endswith(".com"))' dns.log

Note however, that the select() operator can be very slow,
especially on large data sets. Using a preprocessor such as grep
(or zgrep for gzip-compressed JSON) can provide a dramatic
performance improvement.

Chaining jq Operations
The pipe symbol, |, can be used in the filter statement to pass
the output of one operation to the input of the next.
 $ jq 'select(.rcode_name == "NOERROR") ⏎
 | .query' dns.log
 "www.sansgear.com"

Reformatting Time Stamps
Many logs use a form of the UNIX Epoch timestamp. Rather
than use external conversion utilities, jq can convert these
natively. (The | operator passes output from one part of the filter
as input to the next and |= replaces a field’s value in place.)
 $ jq '.ts |= todate | .ts' dns.log
 "2020-10-09T17:50:24Z"

 1 5

 6

 JSON: Structure for Humans and Machines

JSON (JavaScript Object Notation) is an open standard data
interchange format, which is both machine-parsable and
(mostly) human-readable.
JSON is built on two primary structures: Key/value pairs and
ordered lists of values. Data types for values can consist of
strings, numbers, booleans, nested JSON objects, or the null
value.
A single-field JSON object might look like this:
 { "name": "Lance" }

A more complex JSON object might look like this:
 { "name": "Lance", "age": 42,
 "active": true, "tags": ["tag1",
 "tag2"], "address": { "street":
 "123 Main", "city": "Lewes",
 "state": "DE", "postalCode":
 "19958"}, "pet": null }

JSON can be represented in compact form, as shown above with
one object per line, or expanded as shown below – both formats
are considered equivalent. Note that tags is an array and
address is a nested JSON object.
{
 "name": "Lance",
 "age": 42,
 "active": true,
 "tags": [
 "tag1",
 "tag2"
],
 "address": {
 "street": "123 Main",
 "city": "Lewes",
 "state": "DE",
 "postalCode": "19958"
 },
 "pet": null
}

Sample JSON Record
The following JSON object will be used for all examples. This
reflects a single entry from a dns.log file created by the Zeek
Network Security Monitoring platform. All examples assume
the compact version of this record in a file named dns.log. If
you’d like to test on your own, download the sample record from
for572.com/dnslog-sample.
 {
 "ts": 1602265824.123071,
 "uid": "CHFRflzsgM15k9et4",
 "id.orig_h": "192.168.75.169",
 "id.orig_p": 58506,
 "id.resp_h": "192.168.75.1",
 "id.resp_p": 53,
 "proto": "udp",
 "trans_id": 50763,
 "rtt": 0.022633075714111328,
 "query": "www.sansgear.com",
 "qclass": 1,
 "qclass_name": "C_INTERNET",
 "qtype": 1,
 "qtype_name": "A",
 "rcode": 0,
 "rcode_name": "NOERROR",
 "AA": false,
 "TC": false,
 "RD": true,
 "RA": true,
 "Z": 0,
 "answers": [
 "vhost1.identityvector.com",
 "70.32.97.206"
],
 "TTLs": [
 3600,
 3600
],
 "rejected": false
 }

Fundamental Usage: Pretty Print
In its simplest usage, jq will format compact JSON objects into
their expanded form, as shown in the panels to the left. There
are several fundamental command line options that will help you
as well. The '.' filter represents the root of each JSON object
and will simply display all fields in the object when used.
jq Format, filter, and transform JSON data
 $ jq [options] <filter> <input_file>
 -c Compact output instead of “pretty-printed”
 -r Raw output instead of quoted JSON text
 -S Sort output lexically based on key names

For example, to print the sample dns.log entry shown in
expanded form on the left:
 $ jq '.' dns.log

Filtering: Just the Field You Want
Many times, the user only needs to display specific fields from
each JSON object instead of the entire set. This requires a more
detailed filter statement.
To display the value for just one field, identify the field with the
'.<fieldname>' syntax (note the leading dot).
 $ jq '.query' dns.log
 "www.sansgear.com"

To display resulting values in their non-quoted raw form, use the
-r option to the jq command.
 $ jq -r '.query' dns.log
 www.sansgear.com

When referencing a field name that contains any non-
alphanumeric character, double quotation marks must be used.
This is common with the dot character, which designates nested
JSON objects. However, some JSON logs such as Zeek’s use it
as a part of the field name which then requires double quoting.
 $ jq '."id.orig_h"' dns.log
 "192.168.75.169"

To learn what these fields mean, see
for572.com/dnslog-fields.

 4

 2

 3

