

TIPS FOR REVERSE-ENGINEERING
MALICIOUS CODE

Cheat sheet for reversing malicious Windows
executables via static and dynamic code
analysis.

Overview of the Code Analysis Process
1. Examine static properties of the Windows executable

for initial assessment and triage.

2. Identify strings and API calls that highlight the
program’s suspicious or malicious capabilities.

3. Perform automated and manual behavioral analysis to
gather additional details.

4. If relevant, supplement our understanding by using
memory forensics techniques.

5. Use a disassembler for static analysis to examine code
that references risky strings and API calls.

6. Use a debugger for dynamic analysis to examine how
risky strings and API calls are used.

7. If appropriate, unpack the code and its artifacts.

8. As your understanding of the code increases, add
comments, labels; rename functions, variables.

9. Progress to examine the code that references or
depends upon the code you’ve already analyzed.

10. Repeat steps 5-9 above as necessary (the order may
vary) until analysis objectives are met.

Common 32-Bit Registers and Uses
EAX Addition, multiplication, function results

ECX Counter; used by LOOP and others

EBP Baseline/frame pointer for referencing function
arguments (EBP+value) and local variables (EBP-
value)

ESP Points to the current “top” of the stack; changes
via PUSH, POP, and others

EIP Instruction pointer; points to the next
instruction; shellcode gets it via call/pop

EFLAGS Contains flags that store outcomes of
computations (e.g., Zero and Carry flags)

FS F segment register; FS[0] points to SEH chain,
FS[0x30] points to the PEB.

Common x86 Assembly Instructions
mov EAX,0xB8 Put the value 0xB8 in EAX.
push EAX Put EAX contents on the stack.
pop EAX Remove contents from top of the

stack and put them in EAX .
lea EAX,[EBP-4] Put the address of variable EBP-4

in EAX.

call EAX Call the function whose address
resides in the EAX register.

add esp,8 Increase ESP by 8 to shrink the stack
by two 4-byte arguments.

sub esp,0x54 Shift ESP by 0x54 to make room on
the stack for local variable(s).

xor EAX,EAX Set EAX contents to zero.

test EAX,EAX Check whether EAX contains zero, set
the appropriate EFLAGS bits.

cmp EAX,0xB8 Compare EAX to 0xB8, set the
appropriate EFLAGS bits.

Understanding 64-Bit Registers
EAX→RAX, ECX→RCX, EBX→RBX, ESP→RSP, EIP→RIP
Additional 64-bit registers are R8-R15.

RSP is often used to access stack arguments and local
variables, instead of EBP.

|| R8 (64 bits)
________________________________|||||||||||||||||||||||||||||||| R8D (32 bits)
__|||||||||||||||| R8W (16 bits)
__|||||||| R8B (8 bits)

Passing Parameters to Functions
arg0 [EBP+8] on 32-bit, RCX on 64-bit

arg1 [EBP+0xC] on 32-bit, RDX on 64-bit

arg2 [EBP+0x10] on 32-bit, R8 on 64-bit

arg3 [EBP+14] on 32-bit, R9 on 64-bit

Decoding Conditional Jumps
JA / JG Jump if above/jump if greater.

JB / JL Jump if below/jump if less.
JE / JZ Jump if equal; same as jump if zero.

JNE / JNZ Jump if not equal; same as jump if not
zero.

JGE/ JNL Jump if greater or equal; same as jump if
not less.

Some Risky Windows API Calls
Code injection: CreateRemoteThread, OpenProcess,
VirtualAllocEx, WriteProcessMemory, EnumProcesses
Dynamic DLL loading: LoadLibrary, GetProcAddress

Memory scraping: CreateToolhelp32Snapshot, OpenProcess,
ReadProcessMemory, EnumProcesses

Data stealing: GetClipboardData, GetWindowText

Keylogging: GetAsyncKeyState, SetWindowsHookEx

Embedded resources: FindResource, LockResource

Unpacking/self-injection: VirtualAlloc, VirtualProtect

Query artifacts: CreateMutex, CreateFile, FindWindow,
GetModuleHandle, RegOpenKeyEx

Execute a program: WinExec, ShellExecute, CreateProcess

Web interactions: InternetOpen, HttpOpenRequest,
HttpSendRequest, InternetReadFile

Additional Code Analysis Tips
Be patient but persistent; focus on small, manageable code
areas and expand from there.
Use dynamic code analysis (debugging) for code that’s too
difficult to understand statically.

Look at jumps and calls to assess how the specimen flows from
“interesting” code block to the other.

If code analysis is taking too long, consider whether behavioral
or memory analysis will achieve the goals.

When looking for API calls, know the official API names and the
associated native APIs (Nt, Zw, Rtl).

Authored by Lenny Zeltser with feedback from Anuj Soni. Malicious code analysis and related topics are covered in the SANS Institute course FOR610: Reverse-Engineering Malware, which they’ve
co-authored. This cheat sheet, version 1.0, is released under the Creative Commons v3 “Attribution” License. For additional reversing, security and IT tips, visit zeltser.com/cheat-sheets.

https://zeltser.com/
https://malwology.com/
https://sans.org/for610
https://creativecommons.org/licenses/by/3.0/
https://zeltser.com/cheat-sheets

	Tips for Reverse-Engineering Malicious Code
	Overview of the Code Analysis Process
	Common 32-Bit Registers and Uses
	Common x86 Assembly Instructions
	Understanding 64-Bit Registers
	Passing Parameters to Functions
	Decoding Conditional Jumps
	Some Risky Windows API Calls
	Additional Code Analysis Tips

