

How To Use This Sheet

This document is aimed to be a reference on
the filtering options available with each of the
Plaso tools. Although there is some overlap in
filtering options across the various tools, there
are also filtering options that are unique to a
specific tool. There are also filtering options
that are not widely documented and are shown
here. There are some lists of items, such as
datatypes, that are not shown in their entirety.
Complete Lists can be found at:

https://github.com/mark-hallman/plaso_filters

Example of filtering for evidence of program execution.
This filter identifies more events than using parsers. Long
command lines can exceed the Windows command line
limit and if so, will have to be run in Linux.

psort.py -z "UTC" -o l2tcsv -w
execution_of_execution.csv c-drive.plaso
"message contains 'Prefetch {' or
message contains 'AppCompatCache' or
message contains 'typed the following
cmd' or
message contains 'CMD typed' or
message contains 'Last run' or
message contains 'RunMRU' or
message contains 'MUICache' or
message contains 'UserAssist key' or
message contains 'Time of Launch' or
message contains 'Prefetch' or
message contains 'SHIMCACHE' or
message contains 'Scheduled' or
message contains '.pf' or
message contains 'was run' or
message contains 'UEME_' or
message contains '[PROCESS]'"

psort.py -z "UTC" -o l2tcsv -w
execution_test.csv c-drive.plaso
“parser is ‘userassist’ or parser is
‘prefetch’ or parser is ‘amcache’ or
parser is ‘windows_run’”

Context Sensitive Fields

LNK files – drive_serial_number, driv_type, volume_label
Prefetch – executable, mpaaed_drives, mapped_files,
volume_serial_serial_numbers
EVTX – event_identifier, source_name, message_string

These are just a few examples, there are many more.
These context sensitive fields where found by reviewing the
Plaso formatters on the Plaso GitHub page.

“Evidence of” Example

Plaso Filtering
Cheat Sheet 1.03

DFIR.SANS.ORG Timelines are crucial to DFIR analyst’s
efforts to paint a picture of what
happened on a device or in an

incident. Plaso is a widely adopted
tool for creating timelines. If

constraints are not focus results Plaso
can generate overwhelming amounts

of data. This cheat sheet provides
filtering tips and techniques for

efficiently using Plaso.

Windows Data_Types

registry:key_value
windows:distributed_link_tracking:creat
ion
windows:evtx:record
windows:lnk:link
windows:metadata:deleted_item
windows:prefetch:execution
windows:registry:amcache
windows:registry:amcache:programs
windows:registry:appcompatcache
windows:registry:installation
windows:registry:key_value
windows:registry:list
windows:registry:network
windows:registry:office_mru
windows:registry:sam_users
windows:registry:service
windows:registry:shutdown
windows:registry:userassist
windows:shell_item:file_entry
windows:srum:application_usage
windows:srum:network_connectivity
windows:srum:network_usage
windows:tasks:job
windows:volume:creation

Data_types can provide a much finer level of granularity than
parsers. There are many other data_types. Take a look here.
https://github.com/mark-hallman/plaso_filters

Data_Type Filter Examples

$ psort.py -o l2tcsv -w userassist.csv
c-drive.plaso "data_type is
'windows:registry:userassist'"

$ psort.exe -z "UTC" -o l2tcsv -w
files_on_usb.csv c-drive.plaso
"data_type is 'windows:lnk:link' and
drive_type == 2"

$ psort.exe -z "UTC" -o l2tcsv -w
chrome.csv c-drive.plaso "data_type
contains “chrome”

** "drive_type" is an example of a “context “sensitive field,
meaning it is only available for certain types of events. In this case,
LNK file events. Drive_type == 2 is for removable drives. More
examples at:

psort

Output Formats
$ psort.py -o list – Shows all available formats

Commonly used output formats
l2tcsv – 17 field legacy log2timeline fixed format
date,time,timezone,MACB,source,sourcetype,t
ype,user,host,short,desc,version,filename,i
node,notes,format,extra

dynamic – default output 9 fields. Fields can be added or
removed from this format. datetime,
timestamp_desc, source,
source_long,message, parser,
display_name,tag

dynamic output examples using -–fields & --additional_fields

$ psort.py -z "UTC" -o dynamic —
additional_fields
"data_type,strings,event_type" -w
add_fields.csv
c-drive.plaso

$ psort.py -z "UTC" -o dynamic --fields
"datetime,macb,data_type,drive_serial_numbe
r,drive_type" -w winlnk.csv c-drive.plaso
"data_type is 'windows:lnk:link'"

Filter on fields that are not in output format

$ psort.py -z "UTC" -o l2tcsv -w winlnk.csv
c-drive.plaso "data_type is
'windows:lnk:link' and drive_type == 2"

Start with date as a filter. Best for larger ranges.

psort.py -z "UTC" -w date_filtered.csv c-
drive.plaso "date > '2018-10-11 00:00:00'
AND date < '2018-10-22 023:59:59'"

Time Slice – Best for smaller, targeted, ranges.

psort.py -z "UTC" --slice '2018-10-22
010:59:59' –slice_size 1 -w sliced.csv c-
drive.plaso

Slicer – Event context- Nbr of events surrounding each filtered
event

psort.py -z "UTC" --slice_size 20 --slicer
-w slicer.csv c-drive.plaso “data_type is
windows:prefetch:execution and “date >
'2018-10-11 00:00:00' and date < '2018-10-
22 023:59:59
time_slice parameter is minutes.

image_export

Files can be extracted by filter file, extension, date
filter, signature. The Filter File is the same format as
the file used for log2timeline.

$ image_export -f filter_windows.txt
--no_vss -w export_folder_name c-
drive.e01

Timestamp types: atime, ctime, crtime, bkup

$ image_export.py –vss_stores all
-x "doc,docx,xls,xlsx,ppt,pptx,pdf"
--date_filter "crtime, 2013-10-21,
2013-10-23" -w c-drive_docs_export c-
drive.e01

log2timeline

Log2timeline Filtering Options: 1. File filters and 2. Parsers.
These options can significantly decrease the number of
events returned and time to execute. Eg. 2.5 hours
down to 2.5 minutes.

Example filter files can be found at:
 https://github.com/mark-hallman/plaso_filters

Get help and list all the parsers with:

$ log2timeline.py --info

Use filter file and process no VSS’s:

$ log2timeline.py -f
filter_windows.txt
--no_vss c-drive.plaso c-drive.E01

Use filter file, process All VSS’s (and live) and use a list
of parsers

$ log2timeline.py -f
filter_windows.txt –parsers
“amcache,prefetch,userassist”
--vss_stores all c-drive.plaso c-
drive.E01

Source does not have to be an image

$ log2timeline.py triage.plaso
/mnt/windows_mount

• Parsers and file filters with log2timeline are a good
practice most of the time.

• “contains” == case insensitive “is” == case sensitive
• No parsers == default to “win7”
• data_types are all lower case.
• All commands are shown with the .py as run from

Ubuntu. Windows version has a .exe extension
• Image_export – easy way to get files out of VSS’s
• Plaso runs very well in Windows. No VM, simple to

install and you have easy access to your other
Windows tools.

• “date” used in filters is the date field in the
default (dymanic) output

• Multiple psort output files (csv) can be concatenated
if you have filters that can’t be expressed in a single
statement.

• Log2timeline can use a dump (.plaso) file as input
• Explore Context sensitive fields – look at the GitHub

references on the sheet.
• Presets.py can easily be edited to create your

own groupings of parsers for log2timeline. Think
custom “win7”

Filtering Tips

Tagging populates the “tag” field in the Plaso DB based
upon rules define in the tag file. That tag value can then be
used to filter. Tags are assigned to events based upon rules
defined in the tagging file. An event can be responsive
more than one tag rule or to no rule at all. Events that are
responsive to more than one expression will have a tag
value similar to (tag1, tag2, tag5). The tag field can include
in your output when using the Dynamic output format (-o
dynamic)

The message, also referred to as long_desc, can’t be used
in a tagging file expression.

Run the tagging process with tag_file

psort.exe -o null --analysis tagging --
tagging-file tag_windows.txt -w c-
drive.plaso

Use the tags that were populated in the step above to
filter

psort.exe -o l2tcsv -w
tagged_results.csv c-drive.plaso tag
is application_execution and tag is
application_install

Example Tag File: https://github.com/mark-
hallman/plaso_filters

Event Tagging

http://www.sans.org/

