Regular Expression
Author: Joff Thyer,
Version 20210426-A1

Reference Sheet
© 2021, Rivergum Security LLC.

Types of Regular Expressions Quantifiers

POSIX BRE POSIX Basic Regular Expression ? match previous character @ or 1 time

POSIX ERE POSIX Enhanced Regular Expression * match previous character zero or more times

PCRE Perl Compatible Regular Expression + match previous character one or more times

PCRE Character Classes {x} match previous character exactly x times

\w single word character [A-Za-z0-9_] {x,y} match previous character between x and y times

\W NOT a single word character Disable Greedy After Quantifier with ?

\d single digit [A-2].+["A-Z] Greedy expression for one or more of anything between
starting uppercase and ending NOT uppercase letter.

\D NOT a single digit [A-Z].+2[*A-Z] E:Zz:i;ejr:izsbsza;;:;::‘same expression. Helps with

\s space character (tab,space,newline) Anchors / Assertions

\s NOT a space character n assert that characters following must match from the
beginning of the string data

\b border/transition (\w <-> \N) $ Zii::; ;::; prior characters must match only at the end of

[A-F@-9] custom character set with range Behavior Modifiers

[*A-F@-9] NOT/negation of character set (?1) disable case sensitivty in this pattern

. ANY single character / wildcard (?m) match beyond the end of a newline in the data

POSIX Character Classes (?s) wildcard (dot) also matches a newline character

[:alpha:] single letter Logical OR

[:alphanum:]

:blank:]

sentrl:]

:digit:

:graph:
:lower:
iprint:
spunct:

:space:

tupper:]

:xdigit:]

single letter or number
space and tab

control characters
single digit

visible characters

lowercase letters

visible/printable characters w/ spaces
punctuation and symbols

space character (tab,space,newline)
uppercase letters

hexadecimal digit

(e[1-9]]1[e-2])

(2:0[1-9]|1[6-2])

parentheses and pipe
for matching

adding the ?: characters after first parenthesis will
disable capturing group behavior

symbol define logical OR in pattern

Capturing Groups

(\d{1,31)\. (\d{1,3})\
(\d{1,3})\.(\d{1,3})

Group 1, Group 2, Group 3, Group 4
Group numbering starts from 1. Extracting data from sub-
groups depends on language/tool implementation.

PCRE Backreferencing Groups

(I\""1) (https?://.+2) (\1)
(2P<quote>[\'"]) (https?://.+?)(?P=quote)

The "\1" in group 3 backreferences group 1 (red)
Python allows us to created named groups and backreference

Python RE Module Functions

POSIX ERE Lookahead

and Lookbehind

(2¢=XXX)

(2=XXX)
(2<1XXX)
(21XXX)

Following XXX (lookbehind)

Followed by XXX (lookahead)
Not Following XXX
Not Followed by XXX

re.findall(<pattern>, <data>)
re.match(<pattern>, <data>)

re.search(<pattern>, <data>)

re.compile(<pattern>)

rexp.group(<n>)

Find all occurances of pattern in data and return a Python
list with results.

Find occurrances of pattern from the beginning of data, and
return a "rexp" object to use with group().

Find occurrances of pattern anywhere in data, and return a
“rexp" object to use with group(). (>CPU usage)

Pre-compile a regular expression and return a regular
expression object for use with findall()/match() or search()
Extract captured group data from regular expression object.

Group numbers count from 1. Group argument can be a string
for named groups.

Note: Use the raw string modifier for patterns in python

| re.findall(r'\d+', 'my age is 25')

Example Regular Expressions

Linux/UNIX Command

Line Tool Regular Expression Support

P
-E

grep
grep

sed 's/ +//'

bash (ERE)

vi

grep PCRE regular expressions
grep POSIX ERE regular expressions

stream editor ERE regular expression removes spaces

[[ $email =~ [a-zA-Z0-9_\-\.\+]+@[a-zA-Z0-9\.\-]+ ]] &&
echo "valid Email Addr!"

search/replace leading line spaces across whole file
11,$s/" \+//g

VISA Card Number
Master Card Number

Single Octet of IPv4 Address

~4[0-9]1{12}(?:[0-9]{3})?$
~(?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-
9]{2}|27[e1][e-9]|2720)[0-9]{12}%
(2:25[0-5]|2[0-4][0-9]|[01]2[0-9][0-9]2)

PowerShell Regular Expression Support

PS C:> Get-ChildItem -Path X: | Select-String -Pattern
"\d\d\d-\d\d-\d\d\d\d"

PS C:> '199.12.13.14" -match '[\d\.]{7,15}

True

PS C:\> $m = “My CC number is 1234-4321-9876-1212"

PS C:\> $m -replace '\d{4}',

'xxxx'

My CC number iS XXXX-XXXX-XXXX-XXXX

Match a US Social Security Number in File System

Match an IPv4 address in a naive fashion

Perform a regular expression based replacement of text




