

SQLite POCKET REFERENCE GUIDE

Lee Crognale

Sarah Edwards - mac4n6.com

Heather Mahalik – smarterforensics.com

Some temporary files may also be created, including Journal files

and Write Ahead Logs. Journal files store original data before a

transaction change so the database can be restored to a known

state if an error occurs. They are created by default.

Write Ahead Logs (WAL) contain new data changes, leaving original

database untouched. After a set number of page changes, the WAL

is used to update the actual database. Write ahead logs are

optional. Journal files – stores original data before a transaction

change so the database can be restored to a known state if an error

occurs. (created by default)

SQLite databases are a self-contained database stored as a file

system file (but may have a few supporting files that will also be

needed for analysis!) Files have the magic number “SQLite

format 3”. SQLite files correspond to a database that contains

tables. Tables contain rows of data with corresponding columns

that describe the data in the row.

SQLite Database Basics

• DB Browser for SQLite – Free GUI utility available for

Mac/Windows/*nix – sqlitebrowser.org

• sqlite3 – Free CLI utility available for (or native to)

Mac/iOS/Android/*nix/Windows - sqlite.org/cli.html

• SQLite Spy – Free GUI utility for Windows -
https://www.yunqa.de/delphi/products/sqlitespy/index

• Sanderson Forensic Toolkit for SQLite – Commercial GUI

utility for Windows - sandersonforensics.com

• SQLite Miner - Free script to extract blobs from databases -

https://github.com/threeplanetssoftware/sqlite_miner

• Commercial tools and Browser Plug-ins - A SQLite editor is
available in most forensic tool suites

SQLite Analysis Tools SQLite databases are used to store a vast amount of data
recovered from digital media. This handout cannot
begin to scratch the surface of the great and powerful
things you can do with SQL queries. Use this document
as a “memory jog” for some of the queries, tools
available and examples for normalizing data formats
recovered from databases.
We think you will find this reference as a place to start
or simply help remember which operators and queries
will assist you in your investigation. The tools listed
provide support for CLI and GUI.

How To Use This Document

Arithmetic:

• Addition [+]

• Subtraction [-]

• Multiplication [*]

• Division [/]

• Modulus [%]

Comparison:

• Equal [==] or [=], Not Equal [!=] or [<>]

• Greater Than [>] or Greater Than or Equal [>=]

• Less Than [<] or Less Than or Equal [<=]

Logic:

• IS / IS NOT – Equal/Not Equal

• IN / NOT IN – Is value in (or not) a list of values?

• LIKE (Case Insensitive) / GLOB (Case Sensitive) – Is value like

this other value? Uses wildcards.

• AND / OR – Use with WHERE clause to create complex logic.

• BETWEEN – Look for values between two values.

Operators

This guide is a supplement to SANS FOR518: Mac & iOS
Analysis and Incident Response and SANS FOR585:
Smartphone Forensics Analysis In-Depth, and enhances
concepts covered in other courses. It covers some of
the core methods to extracting data from SQLite
databases. Definitions, sample queries, and SQLite
terminology will help you conduct manual extractions
from databases of interest found on Macs,
smartphones, and PCs. Commercial tools will only get
you so far. Manual recovery and extracting contents is
what really matters!

Purpose

• NULL – NULL Value

• INTEGER – Signed Integer

• REAL – Floating Point Number

• TEXT – Text String (UTF-8, UTF-16BE or UTF-16LE)

• BLOB – (Binary Large OBjects) to store large chunks of data.

This data may be a picture, video, audio, or archive (Gzip) files.

This data is not defined in the database, it may contain

anything an app developer desires. This data is often

overlooked but may contain forensic nuggets of gold!

Data Types

Get everything from a single table:
SELECT * FROM A_TABLE;

Get two columns from a single table:
SELECT COLUMN_A, COLUMN_B FROM A_TABLE;

Basic Analysis Query Structure

http://www.yunqa.de/delphi/products/sqlitespy/index

v.2

• Official SQLite Documentation: https://sqlite.org

• Great Tutorials:

o https://www.tutorialspoint.com/sqlite/

o http://www.sqlitetutorial.net/

o http://zetcode.com/db/sqlite/
o http://sandersonforensics.com/forum/content.php?2

75-How-NOT-to-examine-SQLite-WAL-files

• FOR518 – Mac Forensic Analysis – FOR518.com

• FOR585 – Advanced Smartphone Forensics – FOR585.com

SQLite References & Tutorials

Examine the table to determine if data is moved to the free pages

or a Boolean value is entered to mark the data deleted.

Use a SQLite Editor to examine the free pages in a Hex view to carve

for deleted artifacts.

Use scripts and tools available to conduct a cursory scan of the free

pages for deleted SQLite entries.

SQLite Deleted Records Parser - Python script and GUI to parse

deleted data from SQLite databases -

https://github.com/mdegrazia/SQLite-Deleted-Records-

Parser/tree/master/Old_Versions/sqlparse_v1_1

SQLite Deletion

Column Renaming:
A_TABLE.ZAWKWARDCOLUMNNAME AS “Chat Messages”

Counting:
SELECT COUNT(*) FROM A_TABLE;

Aggregating with GROUP BY and COUNT (Count chat messages per

contact):
SELECT MESSAGES,COUNT(*) FROM CHAT GROUP BY

CONTACT;

Sorting with ORDER BY:
SELECT * FROM CHAT ORDER BY A_TIMESTAMP ASC

ASC = Ascending

DESC = Descending

Searching with WHERE and LIKE:
SELECT CONTACT, MESSAGE FROM CHAT WHERE

CONTACT LIKE ‘%Hank%’

Useful Stuff

The SQLite header for every database will contain offsets enabling

you to differentiate if a journal or WAL is being used to support the

database.

• File Offset 18 (1 byte) = x01 = Journaling

• File Offset 19 (1 byte) = x01 = Journaling

OR

• File Offset 18 (1 byte) = x02 = WAL

• File Offset 19 (1 byte) = x02 = WAL

Is the Database Using WAL or Journaling

Use the command line version of the sqlite3 program

(sqlite.org/cli.html) either in a SQLite shell, or just query via CLI:
$ sqlite3 <db_file>

$ sqlite3 <db_file> ‘select * from a_table’

• .help – Provides a list of these ‘dot-commands’

• .tables – Show the table names in the database

• .headers on – Show the column names in the output

• .mode column - Show left-aligned columns

• .mode tabs – Show tab separated columns

• .output <filename> - Send output to file

• .dump – Dump database contents (use with .output)

• .quit – Quit sqlite3 shell

sqlite3 CLI Options

Timestamps are stored in the databases as one of several numerical

representations. (Timestamps are assumed to be stored in UTC, you

may need to verify this.)

UNIX Epoch (10-digit number - number of seconds since

01/01/1970 00:00:00):

• SELECT datetime(TS_COLUMN,'unixepoch')

Or in local time as suggested by the device settings (this can be

done for all the following timestamps):

• SELECT datetime(TS_COLUMN,'unixepoch',

'localtime')

UNIX Epoch MILLISECONDS (13-digit number - number of

milliseconds since 01/01/1970 00:00:00):

• SELECT

datetime(TS_COLUMN/1000,'unixepoch');

Mac Absolute time, number of seconds since 01/01/2001

00:00:00. To correctly convert this timestamp, first, add the

number of seconds since UNIXEPOCH time to Mac Absolute Time

(978307200), then convert.

• SELECT datetime(TS_COLUMN + 978307200,

'unixepoch');

Chrome time accounts for time accurate to the MICROSECOND,

which requires dividing the number by 1,000,000:

• SELECT datetime(TS_COLUMN/1000000 +

(strftime('%s','1601-01-

01')),'UNIXEPOCH');

Timestamp Conversion

Taking data from two (or more!) tables that have a column in

common and joining them into one table. Identify tables of interest

that contain unique values.

LEFT JOIN – Resulting rows are returned from the LEFT table even

if there are no matches in the right. Using the LEFT JOIN produced

all the text messages including those with and without

attachments.

SELECT

ZVIBERMESSAGE.ZTEXT AS "Message Text",

ZATTACHMENT.ZNAME AS “Attachment Filename",

datetime(ZVIBERMESSAGE.ZDATE+978307200,'unixepoch'

,'localtime') AS "Message Date",

ZVIBERMESSAGE.ZSTATE AS "Message Direction/State"

FROM

ZVIBERMESSAGE

LEFT JOIN ZATTACHMENT on

ZATTACHMENT.Z_PK=ZVIBERMESSAGE.ZATTACHMENT

INNER JOIN - Resulting rows are returned when both items are a

match. Using the INNER JOIN (also achieved by typing “JOIN” in

the query) returned just the messages that included attachments.

Table Joins

http://www.tutorialspoint.com/sqlite/
http://www.sqlitetutorial.net/
http://zetcode.com/db/sqlite/
http://sandersonforensics.com/forum/content.php?2

