TZWorks® Shim Database Parser
(shims) Users Guide

Copyright © TZWorks LLC
www.tzworks.net
Contact Info: info@tzworks.net

Document applies to v0.12 of shims
Updated: Sep 9, 2015

Abstract

shims is a standalone, command-line tool that parses and
extracts components from a Windows Application
Compatibility database. Designed for the malware
investigator, shims allows one to analyze any entry that
may have been used to compromise a Windows system.
shims runs on Windows, Linux and Mac OS-X.

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1
2

O© 00 N o u b

10

INEFOTUCTION ettt ettt e s bt e st e st e e beeesabe e e beeesabeesabeeesabeesabeesreeesareeanns 2
Background INfOrmMationiiiiiiieie ettt e e e e e e st e e s s e e e e ea e e e nnreeas 3
2.1 Compatibility AdminiStrator TOOIcciicciiiii i e et e e e bae e e e eareeas 4
HOW 10 USE the SHIMS TOOI ...ttt st st st ettt s e eaeeeaee s 5
3.1 Quick-look Report for @ Database.........ccuueieiciiii e 7
3.1.1 Statistics for Mounted System Volume or Volume Shadow.........cccceeeeieiicciiieeeec e, 8
3.2 YL Lol a1 =] d g TPt 9
3.3 YT Tl o 1T T= €U 1| E S PRSN 10
3.4 YT 1ol a1 oY= e T 11 LR 11
3.5 PUlling out SPECIfic LiSt TYPE TagS..uuiiiiiiiieeieiiee e eeitee e et e eette e e eette e e e etee e e e ebae e e s e baee e e enbeeeeennseeas 12
3.6 YT 1ol o1 Y= o= 1ol o [T 13
3.6.1 MiCrosoft HOt-PatChing......coccuiiiiiiiiie ettt e e 15
3.6.2 ScanNINg for PatCh Patterns...ccuviii i e e e e 16
3.7 o V1) = o - | - (O PSSO U PRSP 16
371 Matching PE Metadata with Shim ENtriescccccveieieiiei i 17
3.8 Parsing Collections Of SDB filEScccicuiiii ettt e et tte e e e e are e e e ear e e e e eareeas 17
3.8.1 Targeting @ SYSteM VOIUMIEococeiiii ettt ettt e e e ate e e e aee e e e 17
3.8.2 Targeting @ Volume SHadoW COPY ...eiiiiiiiiiiiiieeeciiee e ciiee et e st e e sbae e s svre e s s evee e e e aveeas 17
3.8.3 TarEtING DIFECTOIIES. . e e sesaseaassnaes 17
Comparing the Application Compatibility Administrator to the shims toolcccccceeeiiieinninnnen. 18
Available ENUMEration OPLiONSuuiiiiiiii et e e e e e ecrrrre e e e e e e s eanbae e e e e e s e ssansteeeeeaasessnnsnnes 20
AVaAIlable FINA OPLIONSeeeiiiiiiee et e e e e e e e e s ee e e e e e e e e s snnbaeeeeaesessannsseeneeaeeesannsnnes 20
MiSCEHANEOUS OPLIONS....eiiiiiiiiie ittt rre e e e et e e e e et ee e e s sbae e e seabaeeeesnbeeeeesnbaeeeesnseeeeesasenas 21
Sub Options that can be used with the —stats OpPtioN.........cceeciieiieiciiiecce e 21
Authentication and the LICENSE Fil......c.uoiiiiiiiiiiieeee e 22
RETFEIEINCES ..ttt et e st e bt e e st e e bt e e s abe e s beeesabeeeneeesnseesneeesareens 22

Copyright © TZWorks LLC Sep 9, 2015 Page 1

TZWorks® Shim Database Parser
(shims) Users Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.net/prototype_page.php?proto_id=30
Contact Information: info@tzworks.net

1 Introduction

shims is a command line tool that parses and extracts components from an Application Compatibility
Database (specifically referenced in this user’s guide as a Shim Database or SDB file). This database is
the configuration component used by the Window’s Shim engine used to resolve compatibility issues
between an application and how it interacts with Windows. The technology that implements this
interacts between the Application Compatibility Interface (eg. shimreg.dll and apphelp.dll), the Shim
engine (shimeng.dll), and various callbacks in the Portable Executable (PE) loader.

The Application Compatibility framework uses the Shim Database to identify if, and how, a process or
DLL should be shimmed during process startup and/or DLL loading. The default Shim Database is
located at \Windows\AppPatch\sysmain.sdb and contains thousands of entries for a normal Win7 box.
In addition to the sysmain.sdb database, Windows can have other pre-installed databases and user-
defined custom databases.

While the Window’s Shim engine is used to enhance the user experience as well as resolve
incompatibles between older binaries and operating systems they are running on, it can also be used
(and has been used) as a launching point for malware. Specifically, the Shim engine allows installed
applications on a Windows box to be patched ‘on the fly’ (ie. the term hot-patching is used by the
community). This patch can be used to spawn other processes, or inject undesired DLLs, into the
patched application. Doing this offers the malware writer another way to achieve persistence across
reboots. Therefore, understanding which Shim Databases are on your system and subsequently parsing
those databases to extract targeted patches per application are one of the primary purposes of this tool.

There are at least four different types of modifications that can be done with the Application
Compatibility framework:

e System shims, which get implemented with an APl hook to one of the libraries, AcGenrl.dll or
Aclayers.dll

e Application tailored shims, which also get implemented with an API hook, but to the library
AcSpecifc.dll.

e Flag shims, which specifies some flag(s) to the application, or to an installer, about the
application.

Copyright © TZWorks LLC Sep 9, 2015 Page 2

mailto:info@tzworks.net

e Binary patch, which represents an ‘on the fly’ memory patch on the executable instead of a
system APl hook.

To target an application, or a family of applications, entries within the Shim Database can identify either
specific internal parameters or very generic external parameters to the Application Compatibility
matching algorithm. For example, below are some of the available options that can be seen when
examining a Shim Database.

e Simple matching which can use file timestamp, compile timestamp and/or checksum entries

e More complex matching which can use the present of certain resources within a PE file, such as
bitmaps, and/or other data.

e Generic matching which can use wildcards along with Boolean logic for other matching
conditions.

2 Background Information

Shim databases are typically located in the %windir%\AppPatch main directory. Whether a shim
database targets a 32 bit or 64 bit application and whether it is a custom shim or not, determines which
subdirectory it goes into.

>

4 Windows 2 Name Type
addins o
Aol AppPatch64 File folder

ompat
APPP 5 : Custom
4 atc
£e en-US
AppPatch64
%, AcGenral.dll
4 Custom
%] AcLayers.dll
Custom64 =
%, AcRes.dll
en-US
%] AcSpecfc.dil
assembly
%] acwowb4.dll
Boot
i (%] AcXtrnal.dll
Branding .
%, apihex86.dlI
CsC)
| drvmain.sdb
Cursors i .
| msimain.sdb SDB File
debug !
| pcamain.sdb
Dell ; —
) - | sysmain.sdb SDB File
diannnctice

The 32 bit versions of the default Windows shim databases are at the root of the %windir%\AppPatch
directory. The 64 bit versions of the default Windows shim databases are in one directory down, in the
%windir%\AppPatch\AppPatch64 directory. Custom shim databases (those that are made by anyone
else or are not part of the default Windows shim databases) are stored in the
%windir%\AppPatch\Custom directory and %windir%\AppPatch\Custom64 directories. The 32 bit
versions are stored in the former and 64 bit versions are stored in the latter. Unfortunately, these
directories are only a convention and not a requirement. For example, on my Windows 8 box, the
%windir%\system32\CompatTel directory contains a sysmain32.sdb Shim Database file. The good news
is each custom shim database has a registry entry that identifies its name, path, and installation
timestamp. This can be found at HKLM\Software\Microsoft\Windows

Copyright © TZWorks LLC Sep 9, 2015 Page 3

NT\CurrentVersion\AppCompatFlags\InstalledSDB. Below is the data taken from a sample custom shim
that was installed for demo purposes. So if a Shim Database did use a different path or different
extension, then it would be documented here.

SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\InstalledSDB\{fd241cab-4568-4962-b66e-B15cb56c27ce}

Timestamp: ©x01d@S23fcblcdSe8 (©2/27/2015 ©3:45:13.677 UTC)

DatabasePath REG_SZ C:\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-@15cb56c27ce}.sdb
DatabaseType REG_DWORD exeeeleeee

DatabaseDescription REG_SZ TestShimDB

DatabaselInstallTimeStamp REG_QWORD 8x@1des23fcbBcd5es

2.1 Compatibility Administrator Tool

Microsoft provides a nice GUI utility, called the Compatibility Administrator to read compatible SDB
databases. Below is a screen shot of this tool examining the global sysmain.sdb database. This tool is
very useful in breaking out the various applications that are targeted, the compatibility fixes and the
modes. The tool also shows any custom database currently active as well.

g ™\
% Compatibility Administrator (32-bit) - Microsoft Application Compatibility Dat..ﬂﬂ
File Edit View Database Search Help

%j New lbOpen H y ‘@ \i) AppHel " .] ’/‘\'Search

= \3 System Database (32-bit) Applications -
i
+14 !Iiiiiﬁii! -
:) $100,000 Pyramid

+ Compatibility Fixes

-] Compatibility Modes %}_ISD& ‘ 4
+-§8) Installed Databases 9000 Legacy Registry Entries (NTVDM Compat Flags)
-8 Per User Compatibility Settings }3000 Legacy Registry Entries (User Compat Flags)
[i Custom Databases ':’55000 Test Entries
'L) 10 voor Taal 3

D 100 Years Print @ KONICA MINOLTA (Ex Store)
'L) 1000 Best Fonts

') 1000 Best Solitaire Games: 3 Peak Space Cards
') 1000 Borders & Backgrounds

5 1000 Salitaire Games
£ m »

More information about Compatibility Administrator:

Download the latest version of the Application Compatibility Toolkit

6575 Application(s)

" 7

When designing the shims tool, we used the above Microsoft tool to validate our output.
Unfortunately, we could not verify everything, as the Microsoft tool does not show much of the internal
data, which includes: patches, GUIDs, certain flags, etc. So to validate some of the other metadata, we
resorted to other techniques to identify some of the fields that were not shown in the GUI tool. This

Copyright © TZWorks LLC Sep 9, 2015 Page 4

gave us the enough insight to understand many of the fields that were not shown in the GUI tool and
allowed use to write our own application that could work across multiple platforms. While we believe
our shims tools is relatively stable, there are undoubtedly boundary conditions that still need to be
discovered and fixed.

3 How to Use the shims Tool

To extract general purpose information from one of these databases, use the -stats option. This gives
summary information of what type of compatibility fixes are in the database as well as various
timestamps associated with the database.

To search a database, or find details about certain entries, one can use a variety of other options. This
includes filtering on different types of compatibility fixes (such as: patches, shims, fixes), or just
searching for specific target executables or DLLs.

Below is a menu which shows many of the options in summary form:

Copyright © TZWorks LLC Sep 9, 2015 Page 5

~

Administrator: Command Prompt]iﬂl:

shims — full ver: B.12; Copyright <{(c? TZWorks LLC

sage
shims —listsdb list SDB files on system volume

shims —-stats pull stats from SDB files on system volume
shims —sdb <DB> [opts] target SDB file w/ specific option

Enumerate options
—apps

—-exes

—fixes
—shims
—patches
—layers
—flags

—tag <#>
—guids
—stringtable

all apps {(exes, packages, driverblocks.,...>
filter only exe tags

all types of fixes (shims, flags.,..>
filter only shim tag fixes

filter only patch tag fixes

filter only layer tag fixes

*% filter only flag tag fixes

##% filter specific tag type

» enumerate guids

** enumerate stringtable

SRR EEE

Find Options

-strings ""'strl | stpr2
—guid <{guid to find>
—tagids “id1l | id2 ..
—patchbhytes "“pattern"
-match

#»* finds partial strings [case insensitivel

** syntax: 111111111111 -1111-1111-1111111114111
#x% finds specified tagids

e find patch, hex bytes w/ space delimiters
#»% use w/ —pe <PE file> to check for shims

Additional Options
-uss <index>
—partition <{letter>
—pipe
—-stats —sdb <{file>>
-stats —pe <file>
—enumsdh

»x% target Uolume snapshop at index

#»% target Shim DB locations in this volume
** use stdin to identify files to process
pull stats C{on SDB File). [-reg <sw hive’>]
pull stats {on PE File>

list SDB files

General Examples
shims —-sdb <file> —apps
shims —-sdb <{file> —-patches
shims -sdbh <{file> —-stats
shims —-pe <{file> —stats

pull all apps from DB
pull all patches from DB
pull DB stats

pull stats from PE file

Pulling stats from multiple SDB’s

dir c:\windows\AppPatch*.sdb /b /s | shims —stats —pipe —csv > out.csv
shims -vss —stats —csv > out.csv

shims —-partition c: -exes > out.txt

All the compatibility fixes will be rendered in XML output, while the statistics options can be done in
either unformatted text or CSV output. The various options and how they can be used, are discussed in
the sections below.

Copyright © TZWorks LLC Sep 9, 2015 Page 6

3.1 Quick-look Report for a Database

When analyzing a database, one can pull the statistics about the database and its composition by
running the -stats command. Below is an example of running shims on one of the Volume shadow
copies and truncating the output to display the global shim database (sysmain.sdb).

"cmdline:

Database Path/File
Database MDS
Database SHAl

File ModTime

File AccessTime
File CreateTime
Database ModTime
Compiler Version
Database Version
Database Internal Name
Database Platform
Database Identifier

shims64 -stats

-vss 1"

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1l\Windows\AppPatch\sysmain.sdb
1d8c1280d38c526c7041e72db8d70dcl
da2e372481e6cdb450091794a58f294a46belads

04/12/2013 23:32:33.314 [UTC]

09/12/2014 01:00:55.654 [UTC]

09/12/2014 01:00:55.654 [UTC]

04/12/2013 23:33:25.906 [UTC]

2.1.0.3

2.1

Microsoft Windows Application Compatibility Fix Database
0x00000001

11111111-1111-1111-1111-111111111111

appname tag Ox6006: 6625 items
inexclude tag @x7003: 2419 items
shim tag ©x7004: 662 items
patch tag ©x7005: 35 items
exe tag ©x7007: 13105 items
layer tag @x7eeb: 64 items
flag tag 0x7013: 149 items
context tag ©x7018: 1 item
strings tag ©x8801: 39202 items
0x9011:

Databgse Ra i \\?\GLOBALROOT\Device\Harddiskvg

The output shows the various timestamps of the SDB file as well as the last time the database was
updated (via the internal database timestamp labeled Database ModTime). Included in the database
summary are the following: the version number, MD5/SHA1 hashes, identifier, and a number of other
stats about the contents within it, such as the occurrences of the differing fixes and other elements.
From empirical data, the database identifier either uses a class GUID or uses a custom unique GUID. For
example, both the sysmain.sdb and the appraiser.sdb databases appear to be always classified as
111111112-12211-11112-1221-11112322311131321217.
Below is a table of some of the common GUIDs we have found from empirical analysis.

Other databases seem to have common GUIDs as well.

SDB name
sysmain[null|32]64].sdb,
appraiser.sdb,

sysmain[32 | 64]runtime.sdb

(c]V]]»)
11111111-1111-1111-1111-111111111111

Type
App Compatibility Fix D/B

drvmain[null|32|64].sdb Driver Compatibility D/B f9ab2228-3312-4a73-b6f9-936d70e112ef

pcamain.sdb Program Compatibility Assistant D/B 667fc0e7-8d3e-4013-977e-7f9af3a5a5df
msimain.sdb System Installer Compatibility D/B d8ff6d16-6a3a-468a-8b44-01714ddc49ea
KeyboardFilterShim.sdb Embedded Keyboard Filter D/B 709f8b46-ee6f-4948-bc89-cc1653ac6762
apphelp.sdb App Compatibility Message D/B 22222222-2222-2222-2222-222222222222

apph_sp.sdb App Compatibility Message D/B - Service Pack A44444444-4444-4444-4444-444444444444

Copyright © TZWorks LLC Sep 9, 2015 Page 7

One can repeat this by collecting a number of shim databases from various versions of Windows

operating systems into a directory for analysis, and then piping in the directory into the shims tool using

the -pipe and -stats commands together. The -stats command also allows one to use the
options: -csv, -csvl2t, -csv_separator, -dateformat, -timeformat.

source file
{9f4f4a9b-eec5-4906-92fe-d1f43ccf5cBd}.sdb

N

DB date

5/2¢
{fdfbalf3-74ae-4255-9c10-a0f552b4610f}.sdb @
3/21

time-UTC DB ver

platform

DBID

Custom Shim D/B’s

3/25/2005 03:48:03.783
3/25/2005 01:38:18.631
4/12/2013
8/30/2014
9/12/2014 23:41:39.410
10/8/2014

10/8/2014

9/12/2014 23:59:59.112

App helper D/B’s

2.06.03
2.06.03
2.1.03
2.1.03
3.0.0.3
3.0.0.3
3.0.0.3
3.0.03
3.0.03
3.0.03

23:33:29.354
19:13:24.267

18:55:50.679
21:50:07.784
18:55:58.228
21:50:16.878

2/2/2015

2/2/2015

1

000006

0x00000001
0x 00000004
0x00000001
0x 00000004
0x 00000002
0x 00000005
0x 00000005
0x00000002
0x00000002
0x 00000002

c5-4906-92fe-d1f43ccf5c8d
fdfbalf3-74ae-4255-9c10-a0f552b4610f
SRR R L R
22232322-3333-3233-2222-2323222322323
111131111-11311-1111-1111-111111111111
11111111-1111-1111-1111-111111111111
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f3-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
f9ab2228-3312-4a73-b6f9-936d70e112ef
709f8b46-ee6f-4948-bed9-ccl653ach 762

Different versions of Windows Shim D/B’s
(Win2003, Win7, Win8, Win10, etc)

td9ea
rd9ea
rd49ea
rd49ea
a5df

8/21/2013 23:53:01.281
8/22/2013 06:57:05.706
9/12/2014 23:48:35.970
9/12/2014 23:59:37.000

2.1.03
2.1.03
3.0.0.3
3.0.0.3

0x00000001
Ox 00000004
Ox 00000005
0x00000002

667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df
667fc0e7-8d3e-4013-977e-7f9af3a5a5df

DB stats

shim: 1; exe: 1; strings: 15

shim: 1; exe: 1; strings: 15

apphelp: 1278; strings: 2409
apphelp: 531; strings: 1492
inexclude: 2549; shim: 709; patch: 3
inexclude: 2539; shim: 710; patch: 3
exe: 69; strings: 131

strings: 2

exe: 203; lookup: 666; strings: 970
exe: 266; lookup: 3; kdevice: 341; kdg
exe: 275; lookup: 3; kdevice: 334; kd
bios_block: 383; device_block: 229
bios_block: 383; device_block: 21708
bios_block: 393; device_block: 2283
bios_block: 393; device_block: 2163,
shim: 2; exe: 6; strings: 18

file: 54; msi_transform: 54; msi_pa
file: 214; msi_transform: 214; msi_p
file: 245; msi_transform: 245; msi_f
file: 246; msi_transform: 246; msi
exe: 190; flag: 2; strings: 467

exe: 251; flag: 5; strings: 585

exe: 31; flag: 5; strings: 73

exe: 255; flag: 5; strings: 589

exe: 34; flag: 5; strings: 77

cmd: dir e:\sdbfiles*.sdb /b /s | shims -pipe -csv -stats > out.csv

7%

4/12/2013 23:31:05.739 2.1.0.3

1111

inexcluge:

Custom shims have some additional statistics that come from their respective registry entries. Of

interest are: (a) the shim database ‘install’ timestamp and (b) when the subkey for the registry entry was

modified. Below is an example of where these additional timestamps are populated in the stats output:

"cmdline:

Database Path/File
Database MDS
Database SHAL
File ModTime

File AccessTime
File CreateTime
Database ModTime
Reg DB InstallTime
Registry ModTime
Compiler Version
Database Version

Database Platform
Database Identifier
appname

exe

strings

shims64 -sdb c:

Database Internal Name

e3/e2/2e15
@3/e3/2e15
e3/e2/2e15
@3/e2/2e15
@3/e3/2e15
@3/e3/2e15
2.1.0.3
2.1
TestShimDB
@xee000eel

2 items
2 items
15 items

tag Ox6@06:
tag ex7ee7:
tag @x3801:

19:42:24.645 [UTC)
04:39:16.900 [UTC]
19:42:24.645 [UTC)
19:42:42.176 [UTC]
94:41:96.537 [UTC]
04:41:06.537 [UTC]

\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-015cb56c27ce}.sdb -stats”

c:\Windows\AppPatch\Custom\{fd241ca6-4568-4962-b66e-015cb56c27ce}. sdb
2de6@abdfS6c914a336a48a7eaacabs
57d1fd6f@21d8b3d88732474e2f4@dffefdc26dd

Custom shim

]' | Times available from registry

fd241ca6-4568-4962-b66e-015ch56c27ce

3.1.1 Statistics for Mounted System Volume or Volume Shadow

If one just wants to enumerate all the shim databases in the conventional directories as well as any

custom shim databases, one can use the -partition option and the -vss option. The first option will

Copyright © TZWorks LLC

Sep 9, 2015

Page 8

analyze the specified system partition, and the second option will analyze the specified volume shadow.
Below are examples:

shims -partition “c” -stats -csv

shims -vss 1 -stats —csv

3.2 Searching Strings

The string search is case-insensitive and looks for partial strings. The search will default to scanning all
application type tags. As an example, let’s say one wanted to analyze all the entries that make up the
Compatibility Fix name, such as “InjectDLL” or “RunAsAdmin”. To search multiple strings, just use a pipe
delimiter between the strings you want to search on. If one of the substrings is found, the application
that included the substring is returned so that one can see the context of where it was used. Below is an
example of performing this search on a Windows system volume.

<shimdb>
<header>

cmd: shims64 —partition c: -strings “InjectDLL | RunAsAdmin” > out.txt

usg

<meta info="run time: ©3/03/2015 20:27:44 [UTC]" />
<meta info="cmdline: shims64 -partition c: -strings 'InjectDll | RunA
<meta file="c:\Windows\AppPatch\sysmain.sdb" />
</header>
<exe name="*.exe" wildcaname="*.exe" vendor="Big Fish Games" exeid="
<app appname="Big Fish Gamesgfnstaller" appid="6b9992e3-b4b9-4e20-90%
<matchingfile name="*.exefidompanyname="Big Fish Games" productname=
<layer name="RunAsAdmin" "layertagid="32c5c">
<layer name="RunAsAdmin" fixid="fS5ac3378-b8e4-4f9b-aa%a-d839e5blef
<data name="SHIMFLAGS" data_valuetype="0x00000004" data_dword="0x0e
<flagref name="RunAsAdmin" flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe®4339
</flagref>
</layer>
</layer>
</exe>
<exe name="GLJ)*.tmp" wildcaname="GLJ*.tmp" vendor="AOL" exeid="f83aef
<app appname="AOL Instant enger"” appid="d1591404-7clc-4a8e-939
<matchingfile name="GLJ* " size="0@x00000a00" checksum="0x49446ela"
<shimref name="InjectDll" shimtagid="2524a" commandline="RTvideo.d1ll"
<shim name="InjectDll" dllfile="AcGenral.DLL" fixid="3432bc96-d181-4
</shimref>
</exe>
<exe name="SkypeSetup*.exe" wildcaname="SkypeSetup*.exe" vendor="Skypé
<app appname="Skype" appid="9431548c-b3d7-4f2e-83f1-a8daRaecefo7" />
<matchingfile name="SkypeSegupl.exe" companyname="Skype Technologies
<layer name="VistaSetup" /
<flagref name="RunAsAdmin" flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe@43396
</flagref>
</exe>
<exe name="SkypeToolbarForOutlook*.exe" wildcaname="SkypeToolbarForOutj
<app appname="Skype Email Too)¥ar" appid="d9fa215c-52c3-472b-b6ff-b6¢
<matchingfile name="SkypeT, arForOutlook*.exe" companyname=""Skyp
<flagref name="RunAsAdmin'™ flagtagid="2ebe4">
<flag name="RunAsAdmin" fixid="3c824c52-8f73-4ala-81dd-19bcbe@43396"
</flagref>
</exe>

Copyright © TZWorks LLC Sep 9, 2015 Page 9

In this case, four application entries are found and the output is rendered in XML. Annotated are the
locations of where the specified strings were found.

3.3 Searching GUIDs

The Shim database makes use of GUID identifiers for three main types of tags: executables,
applications, and fixes. It should be noted that the executable GUID identifier is independent of the
application GUID identifier, however all executable containers also include an application identifier.
From the empirical data, the application GUID is used to group similar executables where each
executable can have a different (or the same) name, but have different executable GUIDs. When viewed
in the Microsoft Compatibility Administrator, the Applications folder contains folder instances of
application GUID IDs, where each folder is a collection of unique executable GUID IDs (Note: the GUID
for the application and executable are not the same). The previous screen shot shows this for the first
application entry. Unfortunately, the Compatibility Administrator tool does not show the GUIDs of the
items.

Instead of repeating the search using one of the GUIDs shown from the previous example, we will use
the application identifiers used for the Skype application. To find which GUIDs are used in the database,
one can do an initial scan for all GUIDs by using the -guids switch. Below is the type of output you
would get by invoking this command:

Exe ID's
000095fb-9095-45dc-b899-63287cf2875f | exeid | fsbl.exe
0002936d-4f20-4722-8013-a73af7b495c0 | exeid | fifawc.exe
0008fac6-62bb-4476-b5e5-946a219aad4a2 exeid | SetupuT3.exe
000b3134-2e8c-4a88-b7fe-a190d8ec54b4 | exeid | sinfo.exe
000b6611-756d-4054-8f4a-667542c5¢c736 exeid setup. exe
000b9bfa-be99-4481-8e42-431dd6550252 exeid D410_AO05. EXE
001174ed-53ea-4448-9cc5-995e952412eb | exeid | Setup.exe
001228f1-d07e-45cd-9966-67e9630e5650 | exeid | kriOn.sys
0014e76a-ele0-4abe-b768-81ce93362061 exeig setup. exe
0 xei setup. exe

shims -sdb sysmain.sdb -guids > out.txt 'g “aigl’ e oholl of
940cs3acu-05F3-4. _-b4c0-889eb3142454 Py .4 | Easy CD Creator 3
9418daa3-5620-49¢c2-b3c0-5bed5070557b | appid | one-click Fixes
941f2b66-c0c3-4950-af4b-17e9b627e51d | appid | shrek 2: Team Action
942511df-edf5-463d-95a2-93ab551acca0 | appid | LivepPix 2.0
94283dbf-7a39-4ce2-8del-f001d794f2bb | appid | The Incredibles
942c88fc-8b75-456a-b603-bd8caabcicaf | appid | Novaxchange 3

31178e-33bb-4068-bef1-f778bf546c0d | app virtual peep Sea Fish
9431548c-b3d7-4f2e-83f1-a8da0a0c0f97 | appid | Skype]
94321ae2-5329-4504-96bb-/e38etr0cc/ce appid Traductor Reverso Pro
94339dee-6f53-4f4c-a2a8-ac77eb3294e8 | appid | Army Men world war
9438e295-5e01-481e-a806-0c5cf1abe690 | appid | Active Directory Migr
943f7f6e-04fd-4b6f-98bb-037377f8f4e3 | appid Jiangmin KV Antivirus

The above output is broken out by exeid (for executable identifiers), appid (for application identifiers),
and fixid (for fix identifiers). For this example, we will pull the Skype application identifier (eg.
9431548c-b3d7-4f2e-83f1-a8da0a0c0f97) and search on that. Below are the results. Alternatively, we
could have done a string search on “skype”, but the results most likely would have included other
entries that were not designated with this application identifier.

Copyright © TZWorks LLC Sep 9, 2015 Page 10

<?xml version="1.0" encoding="UTF-8"7>
- <shimdb>
+ <header>
- <exe matchmode="0x0002" exeid="d94f7ff5-1099-4f52-baa6-2b01h79a24f0" vendor="Skype Technologies S.A." wildcaname="SkypeSetup*.exe”
name="SkypeSetup*.exe"> H
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" appifame="Skype"/>
<apphelp summarymsg_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="SkypeSetup*.exe" upto_bin_fileversion="3.8" companyname="Skype Technologies S.A.*"/>
<fexe>
- <exe matchmode="0x0002" exeid="ac65ebbf-77¢c8-4562-b031-5c07{058e0f5" vendor="Skype Technologies S.A." wildcaname="SkypeSetup*.exe"
name="SkypeSetup*.exe"> k
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" 3 me="Skype"/>
<matchingfile name="SkypeSetup*.exe” upto_bin_fileversion="2" companyname="Skype Technologies S.A.*"/>
<layer name="VistaSetup"/>
- «flagref name="RunAsAdmin” flagtagid="2eb04" >

</flagref>
<fexe>
- <exe matchmode="0x0002" exeid= '275834a8-0fal—4a9c—89w7995435" vendor="Skype Technologies S.A." name="Skype.exe">
<app appid="9431548c-b3d7-4f2e-832f1-a8da0a0c0fo7" me="Skype"/>

<apphelp summarymsa_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="Skype.exe" companyname="Skype Technologies S.A_*" bin_productversion="3.8"/>
<fexex
- «exe matchmode="0x0002" exeid="326|]c340—5299—463e—h8%3ec?bd31" vendor="Skype Technologies S.A." name="Skype.exe >
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0fo7" me="Skype"/>
<matchingfile name="Skype.exe" companyname="Skype Technologies S.A.*" bin_productversion="3"/>
- <shimref name="RedirectDefaultAudioToCommunications” shimtagid="26d8c" >
<shim name="RedirectDefaultAudioToCommunications” description_rcid="0x0000eb58" general="set" fixid="a8fa7f99-cal13-4d56-b43c-43ed4ca8beda”
dlifile="AcGenral.DLL"/>
< /shimref=

P shims -guid 9431548c-b3d7-4f2e-83f1-a8da0a0c0f97 -sdb sysmain.sdb > out.xml

zflag name="RunAsAdmin” description_rcid="0x0001117d" general="set" flag_lua="0x0000000000000004" fixid="3c824c52-8f73-4ala-81dd-19bcbe043396"/>

3.4 Searching TagIDs

Internally, the Shims database uses tag identifiers to identify certain elements in the database. From
empirical analysis, this TagID turns out to be the offset into the database where the element is located.
Therefore, one can arbitrarily assign the offset of the element as the TagID. This provides a unique key
for each element when creating an associative array for indexing purposes. Therefore, if you know the
TagID of an element, shims can easily look-up the element associated with that Tag/D and output the
resulting data.

To visually see where TaglIDs are used (from our perspective) and how they are lined up with a
container, we will look at the first executable from the previous example, which is GUID d94f7{f5-1099-
4f52-baab-2b01b79a24f0. Using our internal (non-public) options, we show how the shims tool dissects
this entry and identifies each element. The highlighted column shows the mapping of Tag/D to each
element. Therefore, if a database entry used a TaglD to reference a fix, shim, or whatever, it is
straightforward to find it within the database and merge it. Suffice to say, using and searching on
TaglDs is something useful to the reverse engineers.

Copyright © TZWorks LLC Sep 9, 2015 Page 11

@3f422 || 7ee7 | exe i
83428 || 6@@1 | name e LEHLAEIIE vpeSetup*.exe
@3f42e || 688b | wildcaname | SkypeSetup*.exe
83f434 || 6@e6 | appname | Skype
83f43a || 6@es | vendor | Skype Technologies S.A.
e3f440 || 9ees4 | exeid | d94f7Ff5-1099-4F52-baab-2b01b79a24F0
83456 || 9e11 | appid | 9431548c-b3d7-4F2e-83F1-a8dataBcOfI7
83f46¢ || 301 | matchmode eee2
(TaglDs
83f47e || 7eed | apphelp
3476 || 417 | flags | exeeeeeeel
83F47c || 4816 | problemseverity | exeeeoeeel
03€482 || 4615 | html_helpid | exeeesoeeo
23f488 || 4024 | appname_rcid | exeeeceoss
@3f48e || 4025 | vendorname_rcid | exeeeeoosce Tag Values
83494 || 4026 | summarymsg_rcid | exeeee2714
@3f49a || 7ee8 | matchingfile
83f4ae || 6ee1 | name | =
@3f4a6 || 6809 | companyname | Skype Technologies S.A.*
@3f4ac || seed upto_bin_fileversion | 3.8
@803 f422: ©7 70 § 22 @1 60 2a 47 @1 02 @b 6@ 2a 47 .p..... *G... *G
@ee3 f432: ©1 00 06 60 5@ 47 ©1 €@ 5 60 62 47 €1 @8 4 99 ... PG... bG....
©BO3 f442: 10 OO ©@ @9 5 7f 4F d9 99 10 52 4Ff ba a6 2b 81 0...RO. .+.
@ee3 f452: b7 9a 24 6 11 92 16 €6 €0 8@ 8c 54 31 94 d7 b3 ..5........ T1..
@BB3 F462: 2e 4F 83 1 a8 da @a ©c ©Ff 97 @1 30 82 €8 8d 7@ .O......... 8...p
@803 f472: 24 00 00 €0 17 40 01 €0 ©° 00 1P 402 81 @0 B2 €@ 5....@..... @....
@803 F482: 15 40 00 €0 ©° 90 24 40 ©0 00 20 00 25 40 20 00 .@....%@....%@..
@8O3 f492: ©0 00 26 40 14 27 92 €@ ©8 70 16 00 €0 00 Bl 6@ ..&80.'...p..... .
@803 f4a2: 32 ©4 ©0 ©0 @9 60 98 47 ©1 00 od 5@ ff Ff ff FFf 2.... .G...P....
eee3 f4b2: 08 ee e3 ee
2xml version="1,0" encoding="UTF-8"? . . .
. <ohimdbo 107 encoding = UTE-87> | opims -sdlb sysmain.sdb -tagids 0x3f422 > out.xml

+ <header>
- <exe matchmode="0x0002" exeid="d94f7ff5-1099-4f52-baa6-2b01b79a24f0" vendor="Skype Technologies S.A.”
wildcaname="SkypeSetup*.exe" name="SkypeSetup*.exe">
<app appid="9431548c-b3d7-4f2e-83f1-a8da0a0c0f97" appname="Skype"/>
<apphelp summarymsg_rcid="0x00002714" problemseverity="NOBLOCK"/>
<matchingfile name="SkypeSetup*.exe” upto_bin_fileversion="3.8" companyname="Skype Technologies S.A.*"/>
<fexe>
</shimdb>

3.5 Pulling out Specific List Type Tags

A Shim database has all sorts of tags that can be searched on. The shims tool only has shortcut options
for some of the more basic tags. For example: -exes for TAG_EXE, -apps for TAG_APP, -patches for
TAG_PATCHES and a few others. There are many other tags that are available, such as TAG_APPHELP
(0x700d), TAG_KDRIVER (0x701c), etc, which we do not have menu shortcuts. However, one can use
the -tag option to enumerate some of these. Many of these are documented on the Microsoft website
at: (http://msdn.microsoft.com/en-us/library/bb432487). The -tag <tag number> currently only

handles some of the TAG_TYPE LIST items. Below is a table of some of the ones that can be used.

TAG_TYPE_LIST types handled Menu option Purpose

TAG_SHIM -shims Shim entry

TAG_PATCH -patches In-memory (hot-patch) info
TAG_APP -apps Application entry

TAG_EXE -exes Executable entry

TAG_LAYER -layers Layer shim entry
TAG_MSI_FLAG -flags Flag entry to enable built-in fixes
TAG_MATCHING_FILE -tag 0x7008 Matching file entry

Copyright © TZWorks LLC Sep 9, 2015 Page 12

http://msdn.microsoft.com/en-us/library/bb432487

TAG_FILE -tag 0x700c File attributed used in a shim entry
TAG_APPHELP -tag 0x700d Application help info entry

TAG_LINK -tag 0x700e Application help on-line link info entry
TAG_DATA -tag 0x700f Name-value mapping entry
TAG_MSI_TRANSFORM -tag 0x7010 MSI transform entry
TAG_MSI_PACKAGE -tag 0x7012 MSI package entry
TAG_MSI_CUSTOM_ACTION -tag 0x7014 MSI custom action entry
TAG_LOOKUP -tag 0x7017 Lookup entry in a driver database

As an example, to enumerate all the TAG_FLAG's, one normally would use the -flags option, however,
one could also use the option -tag 0x7013 (0x7013 equates to TAG_FLAG) as part of the command. The
TAG_FLAG is actually interesting, in that its presence indicates which built-in Compatibility fix to turn on.
Shown below what one would see if enumerating the flag entries. Highlighted is the flag entry
RunAsAdmin Compatibility fix.

12-78dd-4al9-aee5-143e]

"698cb3ea-feet-4284-b02]

="RunAsHighest

3.6 Searching Patches

The fixes in the Shim database come in a variety of types (shims, flags, quirks, etc.), where patches are
just but one. Focusing on patches, there are two types of patch entries in Shim databases: (a) Those
that are patch sequences that need to be found in the target file and (b) those that are patch sequences
that are meant to replace the sequence found. In addition, the patch entry has the binary location in
the target file where to look and also where to apply the patch. This location is called the RVA which
just equates to the relative virtual address.

Below is a simple patch example that replaces 4 bytes (39 ¢3 7c da) with NOPs (90 90 90 90) at the RVA
of 0x0003856f. In this particular patch, the module name is not explicitly listed, which then defaults to
the one of the matching file names.

Copyright © TZWorks LLC Sep 9, 2015 Page 13

<?xml version="1.0" encoding="UTF-8"?>
- <shimdb>
+ <header>
- <exe matchmode="0x0002" exeid="21b5a994-da33-4b3d-9¢54-c89838fc4947" vendor="Bethesda Softworks"
name="f-16.exe">
<app appid="44940aa2-d534-4298-99aa-f6ab43aaa0bc” appname="F-16 Aggressor’/>
<matchingfile name="f-16.exe"/>

<matchingfile name="datafile_f-16.dll"/>

<matchingfile name="dddcore.dll"/> match

<matchingfile name="SurfaceLockl.wav"/> 9 e —
- <patchref name="F16Aggressor” patchtagid="2b2b0"> 7c da i1 0x00de

PORN TS
+

- <patch name="F16Aggressor” fixid="81cc249d-94af-4adb-a6$9-b902a5f

<patch_translated rva="0x0003856f" action="match” module="
<patch_translated rva="0x0003856f" action="replace" module
/. (PN Y
</patch>
</patchref> Replace
- <shimref name="ForceColnitialize" shimtagid="24144"> .
- <shim name="ForceColnitialize" fixid="9b49a208-0349-4d46-a23d-2b858¢ W/ nop's
description_rcid="0x0000eacl"” general="set" dlifile="AcLayers.DLL">
<include module="AVIFIL32.DLL"/>
</shim>
</shimref>
</exe>
</shimdb>

>39 ¢3 7c da</patch_translated>
">90 90 90 90</patch_translated>

Some of the patches do not have assembly opcodes, but could just target constants or strings. For
example, this next patch clears out two of the video options from a codec DLL module with the name of
tm20dec.ax. From the patch data shown below, there are 2 pairs of match/replace entries. One can see
this by looking at the matching RVA for each pair. The first pair starts by looking for the byte sequence
“55 59 56 59”, which equates to the ASCII characters 'UYVY'. The second pair starts by looking for the
byte sequence “59 55 59 32”, which equates to the ASCII characters 'YUY2'. Both of these happen to be
video formats. The 'replace' portion for both of the matches are a sequence of “2d 2d 2d 2d”, which
equates to the ASCII characters '----', to evidently remove the video format options, should their
companion match condition be satisfied.

<?xml version="1.0" encoding="UTF-8"?>
- «<shimdb>
+ <header>
- <exe matchmode="additive" exeid="d87c32f8-8ce0-4837-adaa-323be0d233a8" vendor="SquareSoft” name="ff7.exe">
<app appid="32ed2326-ale3-4d7d-933e-d4b3e36680e7" appname="Final Fantasy VII'/>
<matchingfile name="ff7.exe"/>
<matchingfile name="FF7Config.exe"/> ‘ ’
<matchingfile name="data\battle\rain7.tex"/> Match ‘UYVY
<matchingfile name="data\music\sato.wav"/>

- <patchref name="FinalFantasy7" patchtagid="2b390">
- <patch name="FinalFantasy7" fixid="eble6b19-bdad-4174-b1 oseezc};soﬁ(Match ‘YUY2’

< [
<patch_translated rva="0x000017c7" action="match” modu! 20dec.ax">55 59 56 59</patch_translated>
<patch_translated rva="0x000017c7" actions "replace”, e="tm20dec.ax">2d 2d 2d 2d</patch_translated>
<patch_translated rva="0x0000187e" acti “match” dule="tm20dec.ax">59 55 59 32</patch_translated>
<patch_translated rva="0x0000187e" ag i'replacc' module=“tm20dec.ai">2d 2d 2d 2d</patch_translated>,

<
</patch> /

</patchref> 5
- <shimref name="Emu| Replace w/ dashes “’ (2d 2d 2d 2d) tm20dec.ax = DLL that is a codec
<shim name="Em 0-fdfe el g} ot =
general="set" dlifile="AcLayers.DLL"/>
</shimref>
- <shimref name="VirtualRegistry” shimtagid="28200" commandline="TRUEMOTION20">
- <shim name="VirtualRegistry” fixid="8e412efc-5b34-4c46-9bb4-71f7290efe3f" description_rcid="0x0000eb2b"
general="set" dlifile="AcLayers.DLL >
<include module="OPENGL32.DLL"/>
<include module="DEVENUM.DLL"/>
<include module="MSVFW32.DLL"/>
<include module="SHLWAPIL.DLL"/>
</shim>
</shimref>
</exe> shims -sdb sysmain.sdb —strings “FinalFantasy7” > out.xml
</shimdb=>

Copyright © TZWorks LLC Sep 9, 2015 Page 14

As a final example, to show how the pattern matching rules allow for a pattern sequence with gaps, the
byte pattern of “ff 15 20 90 ?? ?? 89 1e” is scanned for at the RVA of Ox4fe5. The ‘??’ are just wildcards
in the notation above. This wildcard sequence is implemented, in this case, by using a pair of ‘match’
patterns at the appropriate RVA offsets to create the gap for the wildcards. This pair of match entries is
followed by one ‘replace’ pattern that covers the full size covered by the match-pair and substitutes
NOPs in their place.

<patch name="NetManageViewNowTN327@" fixid="7269485b-3f58-443f-b414-68ea92795df4">

<patchbits>
<patch_translated module="TCPCONN.DLL" action="match" rva="@x@@e84fe5">ff 15 20 9@</patch_translated>
<patch_translated module="TCPCONN.DLL" action="match" rva="@x8@084feb">89 le</patch_translated>
<patch_translated module="TCPCONN.DLL" action="replace" rva="@x@0084fe5">90 90 90 90 9@ 9@ 9@ 90</patch_translated>

tchbit -
<:;§:c;> e Pattern: ff 1520 90 ?? ?? 89 1e with nops

Using various combinations of 'match/replace’ entries, it is relatively straight forward to come up with
any number of patterns to filter and act on. While not strictly necessary, a companion part of the
Application Compatibility architecture is creating hot-patch points (or stubs) within a binary for each
program or library entry point.

3.6.1 Microsoft Hot-Patching

Microsoft designs some of their functions to be dynamically hot-patched. This was first seen in the early
examples of 32bit functions using the byte pattern “8b ff ..” at the beginning of the function. Further,
the function was preceded by 5 NOPs (0x90) or breakpoints (Oxcc) bytes. In fact, the Visual Studio
development platform from Microsoft allows developers to build binaries with hot-patching built in as a
normal course, using the /hotpatch and /functionpadmin options during compiling and linking,
respectively. Since the /hotpatch option only guarantees that each function’s first instruction is at least
2 bytes, the “8b ff” pattern is seen when the function starts with a 1 byte instruction. The NOP byte
sequence is shown below, with the 2 byte pad added by the /hotpatch compile option:

920 nop

% neo
90 nop

90 nop

8b ff mov edi edi | Function start here |
55 push ebp

8b ec mov ebp esp

The function above starts with the byte sequence (8b ff), which translates to moving the contents of the
EDI register to itself. While this is a completely meaningless statement, it acts as filler bytes. From a
hot-patch standpoint, these two filler bytes can be used by replacing them with a two byte jump
instruction that jumps backward 5 bytes to redirect control to the five bytes of patch space that comes
immediately before the start of each function. During the hot-patch operation, the five NOP bytes (or
breakpoint bytes if using Oxcc) are replaced with a full jump instruction that can go anywhere in the
code execution space (a 32 bit operating system is assumed here). So if one was to do a hot-patch and
call some other routine, something like this could be done. Below is what the hot-patch operation

Copyright © TZWorks LLC Sep 9, 2015 Page 15

would result in if wishing to JMP to address Oxdebf9. The arrow below shows the start of the original

function.
e9 f4 eb @d @@ jmp ©@xeeedebf9 ; any relative 32 bit addr
eb f9 €= jmp @xfb ; jmp -5 bytes
55 push ebp
8b ec mov ebp esp

3.6.2 Scanning for Patch Patterns

To assist in searches for patches, one uses the -patchbytes option. The argument is the sequence of
bytes one would like to find. The bytes are represented by hexadecimal notation and each byte is
separated with a space. The entire sequence of bytes is then encompassed in double quotes. To look
for a certain patch, it is useful to understand assembly language, since the byte sequence could
represent the mnemonic opcodes used in the patch.

3.7 PE Metadata

When it comes to finding if a fix or patch targets a particular PE file, one needs access to the PE
metadata to see if there is a match. Shims includes an option -pe <filename> -stats for looking at some
of the more common PE metadata used in the matching syntax. Below is the type of data this option

produces.
"cmdline: shimsé4 -pe c:\windows\notepad.exe -stats”
source file c:\windows\notepad. exe
CcompanyName Microsoft Corporation
compileTimestamp | Ox4a5bc9b3 [07/13/2009 23:56:35 UTC]
FileDescription Notepad
Fj120§ nt, win32
Filesize | 0x0002f400 | pylling PE metadata that can
FileType | app P :
Fileversion | 6.1.7600.163] be used for shim matching
Filename notepad. exe
InternalName Notepad
Legalcopyright © Microsoft Corporation. All rights reserved.
Linkerversion 0x00090000
osmajorversion 0x00000006
osMinorversion 0x00000001
originalFilename | NOTEPAD.EXE
PeChecksum 0x0003e749
ProductName Microsoft® windows® Operating System
Productversion 6.1.7600.16385

Similar to the SDB stats, this option also allows one to use the
options: -pipe, -csv, -csv_separator, -dateformat, -timeformat. The -pipe option is useful if wishing to
pull many PE file matching stats in one run.

Copyright © TZWorks LLC Sep 9, 2015 Page 16

3.7.1 Matching PE Metadata with Shim Entries

One of the requirements of the Application Compatibility framework is to scan the metadata in every PE
file during their load operation and compare it to any of the Shim Databases active on the system at that
time. This is required to see if an executable, DL,L or driver PE file needs to be considered for a fix-up
operation. To test out this with the shims tool, there is an experimental -match option to take in a
desired PE file with companion Shim database to see if any entries in the Shim database target this
particular PE file. Since this option only covers some of the parameters identified in the Shim Database
used for matching, it should be considered prototype in nature and the results should not be considered
definitive.

3.8 Parsing Collections of SDB files

There are 3 basic options for parsing a collection of SDB files: (a) targeting a particular system volume,
(b) targeting a Volume Shadow copy, and (c) targeting a directory and its subdirectories that has a
collection of SDB file.

3.8.1 Targeting a System Volume

If desiring to just parse a system volume without the fuss of finding each Shim database, one can use
the -partition <volume letter> option to look in the conventional locations for SDB databases. The
volume letter would normally be the c: volume for a live system collect, but it can also be a mounted
volume from a system image from another computer.

3.8.2 Targeting a Volume Shadow Copy

To target a Volume Shadow copy, use the -vss <#> option, where the <#> is the index of the targeted
Volume Shadow. The shims tool will scan the registry for custom Shim database locations as well as look
in the conventional locations to find SDB files and parse them all in one session.

3.8.3 Targeting Directories

To target a specific directory (or a nested set of subdirectories within a parent director) that contains
many SDB files, one can use the -pipe option. The first is used to gather statistics about all the SDB files
and renders the output in CSV notation. The second pulls all the applications’ entries from all the SDB
files and renders the output in XML format.

dir e:\sdbfiles*.sdb /b /s | shims -pipe -csv -stats > statsl.csv

dir e:\sdbfiles*.sdb /b /s | shims -pipe -apps > apps.txt

Copyright © TZWorks LLC Sep 9, 2015 Page 17

4 Comparing the Application Compatibility Administrator to the shims

tool

There are two Compatibility Administrator tools: (a) one for 32 bit databases and (b) one for 64 bit

databases. Below is the 32 bit version of the tool, looking at the default 32 bit database on a Win7
operating system, 64 bit install. One can see the number of fixes, modes, and applications the 32 bit
default database handles by looking at the stats in the lower bottom of the dialog window.

s ™
%5 Compatibility Administrator (32-bit) - Microsoft Application ... l&@l&]

File Edit View Database Search Help

%j New L} Open H)@

Q::7¥4

6576 Applications [y | 110

-4 System Database (32-bi

& Q Appllcabons

= B EIETENET] € 811 Compatibility Fixes 7]
CREY| Compat:bﬂuty Modes

® gg] Installed Databases

@ % Custom Databases

+-@ Per User Compatibility Settings ng

>

Compatibility Fixes

B 30studioMax
2

4 Compatibility Modes

ActiveMark6]
< | m | »

More information about Compatibility
Administrator:

Download the latest version of the Applicagtion
Compatibility Toolkit

3

811 Compatibility Fix(es)

<€

—)
R

Running the shims tool against the same SDB file and using the -stats option, yields the following

information.

Database Path/File

Database MDS |
Database SHA1 |
File ModTime |
File AccessTime |
File CreateTime |
Database ModTime |
Compiler Version |
Database Version |
Database Internal Name I

E:\testcase\sdb\win7\AppPatch\sysmain.sdb
1d8c128@d38c526c7@41e72db8d7@dcl
da2e372481e6cdb450091794a58F294a46beladb
84/12/2013 23:32:33.314 [UTC)

82/25/2015 14:26:13.879 [UTC]

©2/25/2015 14:26:13.879 [UTC]

84/12/2013 23:33:25.9@6 [UTC]

1 e.3

2.
2.
mcrosoft Windows Application Compatibility Fix Database
e

Database Platform x20000001
c s R B 1
appname | tag 6)(6906: 6625 items
1nexclude | tag ex7/ : items
shim | tag @x7@@4: 662 items
patch | tag e;aaas 35 items
exe tas i
layer tag Gx?%b 64 items I
Tlag tag T items
context | tag ex7918 1 item
strings | tag exs8sel: 39282 items | #shims + #flags = 662+ 149 = 811
appid | tag @x9011: 7013 items
Copyright © TZWorks LLC Sep 9, 2015 Page 18

Comparing the two outputs shows a couple of things: (a) the Compatibility Fixes in the Microsoft tool
include both the entries of type shim entries and type flag, (b) the Compatibility Mode correlates to the
entries of type layer, and (c) the Applications correlate to the entries of type app name. For the last
one, the Application does not directly correlate to the entries of type exe. The reason for the mismatch
is an Application entry can include 1 or more exe type entries (as well as other types). To see this, one
can look at a few of the Application entries in the Compatibility Administrator tool. For the Application
Entry ‘000 Test Entries’ there contains four exe entries.

[¢ A
%4 Compatibility Administrator (32-bit) - Microsoft Application Compatibility Data... E@ﬂ
File Edit View Database Search Help
'L:’ New l%Open ‘ w \) i @ ie 7~] Run ‘ f> Search |
=-{_) Applications 7 | AppsHelpMechanismTestAppBadHisg.exe
) $100,000 Pyramid ‘ ‘1) AppHelp - NOBLOCK
) _ISDEL =}-,_) Matching Files
‘) 000 Legacy Registry Entri [n" AppsHelpMechanismTestAppBadMsg.exe
Q 000 Legacy Regustry Entri =-n"| AppsHelpMechanismTestAppBadMsgBlocked.exe
Y000 Testentries 1) Apprielp - HARDBLOCK
L) 10 voor Taal 3 &-+,_) Matching Files
-';) 100 Years Print @ KONIC) {7 AppsHelpMechanismTestAppBadMsgBlocked.exe
L) 1000 Best Fonts -7 windowsXPAppsHelpMechanismBlockedTestApp.exe
D 1000 Best Solitaire Games J/ AppHelp - HARDBLOCK
‘L) 1000 Borders & Backgrour -] Matching Files
‘L) 1000 Solitaire Games "] WindowsXPAppsHelpMechanismBlockedTestApp.exe
) 101 ~-m "] WindowsXPAppsHelpMechanismTestApp.exe
L 102 Dalmations Activity Ct ‘1) AppHelp - NOBLOCK
‘L) 102 Dalmations Puppies tc (-1, Matching Files
'D 1075 {7 WindowsXPAppsHelpMechanismTestApp.exe
) 1-239.5
D 1239 — — :
) 123 Free Solitaire This single application entry has 4 exe entries
D 1503 AD: The New World HUOWTIOSU UTE IgLEST VETSION UT UTE ADDICa UOTT LOMPSUONTY TOOUIRIT
Yy 1602 AD
i) 1701AD. -
< —lll i X »
Application: "000 Test Entries” contains 4 fix(es)

If one looks at the companion entry in the shims tools, one can do this by searching on the string “000
Test Entries” and examining the output. Below is an example of doing this and one can see the data that
is in the Microsoft tool is a subset of the data in the shims tool.

<?xml version="1.0" encoding="UTF-8"7> - . - -
. ehimdba shims -strings “000 Test Entries” -sdb sysmain.sdb > out.xml
+ <header>
- <exe matchmode-"uxﬂﬂﬂl" exeid-"DBSbedS-2n9h-42a6-b7d4-6f9cd?9f25ef" vendcr-'Micrﬂ”ame-"AUDSHeIDMecIIanismTeStADDBﬂdMsg.exe">
<app appid="5c314a3c-78e6-4el14-%9ade-df784a85272b" appname="000 Test Entries”/>
<apphelp summarymsg_rcid="0x00000001" vendorname_rcid="0x00009cbe” appname_rcid="0x00007530" problemseverity="NOBLOCK"/>

<matchingfile name="AppsHelpM TestAppBadMsg.exe”/>
<fexe>
- <exe matchmode="0x0002" exeid-"3941:4033-a(}DO--lOl9A856hlaf60921533h8" vendor-"Mic#name-'nppsHelpHechanism'l’estapuBadMsgBIocked‘exe'b
<app appid="5c314a3c-78eb6-4el4-9ade-df784a85272b" appname="000 Test Entries”/ >
<apphelp summarymsg_ rcld- 0)(00000002 vendorname rcid=" Dxl]l:lﬂDQche appname_rcid=" 07530" probl verity="HARDBLOCK"/ >
<matchingfile name="A T gBlocked.exe”/ >
<fexes
- <exe matchmode="0x0002" exeid="0c93f5d4-2f11-4bae-8a2d-4de7073094§3" uendor="ﬂicrwame="“' d XPA h kedTestApp.exe™ >
<app appid="5c314a3c-78e6-4el4-9ade-df784a85272b" appname="000 Test Entries”/ >

<apphelp summarymsg_| md- nxnonnznz vendorname rcid="0x00009cbe” _appname_| rcid="0x00007530" problemseverity="HARDBLOCK" />

<matchingfile name="Wi XPAppsHelph BlockedTestApp.exe”/>

<fexe>

- <exe matchmode="0x0002" exeid="19ffce91-3b3d-4597-9f21-8b7486144a04" vendor-“Mic*ﬁame-" ind ppsHelpMechanismTestApp.exe”>

<app appid="5c314a3c-78e6-4e14-9ade-df784a85272b" appname="000 Test Entries"/>
<apphelp summarymsg_ rcud 0):00002712 vendnrname rcid="0x00009cbe” appname_rcid="0x00007530" problemseverity="NOBLOCK"/>
<matchingfile name=" hanismTestApp.exe”/ >

<fexe>

</shimdb>

Copyright © TZWorks LLC Sep 9, 2015 Page 19

5 Available Enumeration Options

Option
-apps
-exes
-fixes
-shims
-patches
-layers
-flags
-tag
-guids

-stringtable

Extra

**

**

**

**

**

**

**

k

**

Description

Enumerate application category entries. This includes, but is not limited
to, the following types: exe, packages, msi_packages.

Enumerate executable category entries (TAG_EXE)

Enumerate the various types of fixes, including but not limited to: shims,
patches, flags, layers, etc.

Enumerate shim category entries (TAG_SHIM).
Enumerate patch category entries (TAG_PATCH).
Enumerate layer category entries (TAG_LAYER).

Enumerate flag category entries (TAG_FLAG).

Enumerate the specified tag. Needs to be of type TAG_LIST_LIST. The
syntax is -tag <#>

Enumerate all GUIDs in the database along with the name associated with
the GUID

Enumerate all the strings in the string table

6 Available Find Options

Option

-strings

-guid

-tagids

-patchbytes

-match

Extra

**

**

*k*k

*k*k

*k*x

Description

Search for the specified partial strings. If more than one partial string is
listed, then use a pipe delimiter between each string and enclose the entire
set of strings between double quotes. Will search using case-insensitive
logic and will look for partial strings.

Search for the specified GUID. The GUID syntax is 11111111-1111-
1111-1111-1111211121111.

Search for the specified tagid’s. More than one tagid can be searched on
as long as the entire set of tag identifiers are enclosed in quotes and
delimited by the pipe character.

Search for the specified byte pattern in the available patches

Experimental. Used in conjunction with the -pe <PE File> option, to
search the specified Shim DB for possible shims to the specified PE file.

Copyright © TZWorks LLC

Sep 9, 2015 Page 20

7 Miscellaneous Options

Option Extra

-VSS **k*k
-stats

_pe

-pipe *x

Description

Experimental. Parse SDB artifacts from Volume Shadow. The syntax is -vss
<index number of shadow copy>. Only applies to Windows Vista, Win7,
Win8 and beyond. Does not apply to Windows XP.

Output a set of summary statistics about the Shim DB. Syntax is -sdb
<db> -stats. This option also is aware of the following sub-options: -reg
<sw hive> (to pull stats from the hive as well), -csv (for CSV

output), -csvi2t (for log2timeline output), -timeformat, -dateformat,

and -csv_separator.

Specifies the target file is a PE file vice a Shim DB file. Used in
conjunction with the -stats option (eg. -pe <file> -stats) and the -match
option (eg. -pe <file> -match —sdb <shim db>).

Used to pipe files into the tool via STDIN (standard input). Each file
passed in is parsed in sequence.

8 Sub Options that can be used with the -stats Option

Option Extra

-reg
-CSv

-csvI2t

-CSv_separator |**

-no_whitespace |**

-hostname **

-dateformat **

Description

Pull Application Compatibility data related to custom shim databases
from the specified Software hive. Syntax is -reg <sw hive>.

Outputs the data fields delimited by commas.

Outputs the data fields in accordance with the log2timeline format.

Used in conjunction with the -csv option to change the CSV separator
from the default comma to something else. Syntax is -csv_separator "["
to change the CSV separator to the pipe character.

Used in conjunction with -csv option to remove any whitespace between
the field value and the CSV separator.

Option is used to populate the output records with a specified hostname.
The syntax is -hostname <name to use>.

Output the date using the specified format. Default behavior is -
dateformat "mm/dd/yyyy". This allows more flexibility for a desired
format. For example, one can use this to show year first, via
"yyyy/mm/dd" or day first, via "dd/mm/yyyy", or only show 2 digit
years, via the "mm/dd/yy". The restriction with this option is the forward
slash (/) symbol needs to separate month, day and year and the month is

Copyright © TZWorks LLC

Sep 9, 2015 Page 21

in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is -
timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,
via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is
that a colon (:) symbol needs to separate hours, minutes and seconds, a
period (.) symbol needs to separate the seconds and fractional seconds,
and the repeating symbol 'x' is used to represent number of fractional
seconds. (Note: the fractional seconds applies only to those time formats
that have the appropriate precision available. The Windows internal
filetime has, for example, 100 nsec unit precision available.

-timeformat *%

9 Authentication and the License File

This tool has authentication built into the binary. There are two authentication mechanisms: (a) the
digital certificate embedded into the binary and (b) the runtime authentication. For the first method,
only the Windows and Mac OS-X (if available) versions have been signed by an X-509 digital code signing
certificate, which is validated by Windows (or OS-X) during operation. If the binary has been tampered
with, the digital certificate will be invalidated.

For the second (runtime authentication) method, the authentication does two things: (a) validates that
the tool has a valid license and (b) validates the tool's binary has not been corrupted. The license needs
to be in the same directory of the tool for it to authenticate. Furthermore, any modification to the
license, either to its name or contents, will invalidate the license. The runtime binary validation hashes
the executable that is running and fails the authentication if it detects any modifications.

10 References

1. Microsoft Application Compatibility Toolkit: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd562082(v=vs.85).aspx
2. Various MSDN articles, including but not limited to:
a. Application Compatibility Database: http://msdn.microsoft.com/en-
us/library/bb432182(v=vs.85).aspx
b. Tag Types: http://msdn2.microsoft.com/en-us/library/bb432490
c. Tags: http://msdn.microsoft.com/en-us/library/bb432487
3. Secrets of the Application Compatibility Database (SDB) parts 1-4, by Alex lonescu. Ref: http://www.alex-
ionescu.com/.

Copyright © TZWorks LLC Sep 9, 2015 Page 22

http://msdn.microsoft.com/en-us/library/bb432487
http://www.alex-ionescu.com/
http://www.alex-ionescu.com/

