

Abstract
shims is a standalone, command-line tool that parses and

extracts components from a Windows Application

Compatibility database. Designed for the malware

investigator, shims allows one to analyze any entry that

may have been used to compromise a Windows system.

shims runs on Windows, Linux and Mac OS-X.

Copyright © TZWorks LLC

www.tzworks.net

Contact Info: info@tzworks.net

Document applies to v0.12 of shims

Updated: Sep 9, 2015

TZWorks® Shim Database Parser
(shims) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Sep 9, 2015 Page 1

Table of Contents

1 Introduction .. 2

2 Background Information ... 3

2.1 Compatibility Administrator Tool ... 4

3 How to Use the shims Tool ... 5

3.1 Quick-look Report for a Database ... 7

3.1.1 Statistics for Mounted System Volume or Volume Shadow ... 8

3.2 Searching Strings ... 9

3.3 Searching GUIDs .. 10

3.4 Searching TagIDs ... 11

3.5 Pulling out Specific List Type Tags ... 12

3.6 Searching Patches ... 13

3.6.1 Microsoft Hot-Patching ... 15

3.6.2 Scanning for Patch Patterns .. 16

3.7 PE Metadata .. 16

3.7.1 Matching PE Metadata with Shim Entries .. 17

3.8 Parsing Collections of SDB files ... 17

3.8.1 Targeting a System Volume .. 17

3.8.2 Targeting a Volume Shadow Copy .. 17

3.8.3 Targeting Directories ... 17

4 Comparing the Application Compatibility Administrator to the shims tool 18

5 Available Enumeration Options .. 20

6 Available Find Options .. 20

7 Miscellaneous Options .. 21

8 Sub Options that can be used with the –stats Option .. 21

9 Authentication and the License File .. 22

10 References .. 22

Copyright © TZWorks LLC Sep 9, 2015 Page 2

TZWorks® Shim Database Parser
(shims) Users Guide

Copyright © TZWorks LLC

Webpage: http://www.tzworks.net/prototype_page.php?proto_id=30

Contact Information: info@tzworks.net

1 Introduction

shims is a command line tool that parses and extracts components from an Application Compatibility

Database (specifically referenced in this user’s guide as a Shim Database or SDB file). This database is

the configuration component used by the Window’s Shim engine used to resolve compatibility issues

between an application and how it interacts with Windows. The technology that implements this

interacts between the Application Compatibility Interface (eg. shimreg.dll and apphelp.dll), the Shim

engine (shimeng.dll), and various callbacks in the Portable Executable (PE) loader.

The Application Compatibility framework uses the Shim Database to identify if, and how, a process or

DLL should be shimmed during process startup and/or DLL loading. The default Shim Database is

located at \Windows\AppPatch\sysmain.sdb and contains thousands of entries for a normal Win7 box.

In addition to the sysmain.sdb database, Windows can have other pre-installed databases and user-

defined custom databases.

While the Window’s Shim engine is used to enhance the user experience as well as resolve

incompatibles between older binaries and operating systems they are running on, it can also be used

(and has been used) as a launching point for malware. Specifically, the Shim engine allows installed

applications on a Windows box to be patched ‘on the fly’ (ie. the term hot-patching is used by the

community). This patch can be used to spawn other processes, or inject undesired DLLs, into the

patched application. Doing this offers the malware writer another way to achieve persistence across

reboots. Therefore, understanding which Shim Databases are on your system and subsequently parsing

those databases to extract targeted patches per application are one of the primary purposes of this tool.

There are at least four different types of modifications that can be done with the Application

Compatibility framework:

 System shims, which get implemented with an API hook to one of the libraries, AcGenrl.dll or

AcLayers.dll

 Application tailored shims, which also get implemented with an API hook, but to the library

AcSpecifc.dll.

 Flag shims, which specifies some flag(s) to the application, or to an installer, about the

application.

mailto:info@tzworks.net

Copyright © TZWorks LLC Sep 9, 2015 Page 3

 Binary patch, which represents an ‘on the fly’ memory patch on the executable instead of a

system API hook.

To target an application, or a family of applications, entries within the Shim Database can identify either

specific internal parameters or very generic external parameters to the Application Compatibility

matching algorithm. For example, below are some of the available options that can be seen when

examining a Shim Database.

 Simple matching which can use file timestamp, compile timestamp and/or checksum entries

 More complex matching which can use the present of certain resources within a PE file, such as

bitmaps, and/or other data.

 Generic matching which can use wildcards along with Boolean logic for other matching

conditions.

2 Background Information

Shim databases are typically located in the %windir%\AppPatch main directory. Whether a shim

database targets a 32 bit or 64 bit application and whether it is a custom shim or not, determines which

subdirectory it goes into.

The 32 bit versions of the default Windows shim databases are at the root of the %windir%\AppPatch

directory. The 64 bit versions of the default Windows shim databases are in one directory down, in the

%windir%\AppPatch\AppPatch64 directory. Custom shim databases (those that are made by anyone

else or are not part of the default Windows shim databases) are stored in the

%windir%\AppPatch\Custom directory and %windir%\AppPatch\Custom64 directories. The 32 bit

versions are stored in the former and 64 bit versions are stored in the latter. Unfortunately, these

directories are only a convention and not a requirement. For example, on my Windows 8 box, the

%windir%\system32\CompatTel directory contains a sysmain32.sdb Shim Database file. The good news

is each custom shim database has a registry entry that identifies its name, path, and installation

timestamp. This can be found at HKLM\Software\Microsoft\Windows

Copyright © TZWorks LLC Sep 9, 2015 Page 4

NT\CurrentVersion\AppCompatFlags\InstalledSDB. Below is the data taken from a sample custom shim

that was installed for demo purposes. So if a Shim Database did use a different path or different

extension, then it would be documented here.

2.1 Compatibility Administrator Tool

Microsoft provides a nice GUI utility, called the Compatibility Administrator to read compatible SDB

databases. Below is a screen shot of this tool examining the global sysmain.sdb database. This tool is

very useful in breaking out the various applications that are targeted, the compatibility fixes and the

modes. The tool also shows any custom database currently active as well.

When designing the shims tool, we used the above Microsoft tool to validate our output.

Unfortunately, we could not verify everything, as the Microsoft tool does not show much of the internal

data, which includes: patches, GUIDs, certain flags, etc. So to validate some of the other metadata, we

resorted to other techniques to identify some of the fields that were not shown in the GUI tool. This

Copyright © TZWorks LLC Sep 9, 2015 Page 5

gave us the enough insight to understand many of the fields that were not shown in the GUI tool and

allowed use to write our own application that could work across multiple platforms. While we believe

our shims tools is relatively stable, there are undoubtedly boundary conditions that still need to be

discovered and fixed.

3 How to Use the shims Tool

To extract general purpose information from one of these databases, use the -stats option. This gives

summary information of what type of compatibility fixes are in the database as well as various

timestamps associated with the database.

To search a database, or find details about certain entries, one can use a variety of other options. This

includes filtering on different types of compatibility fixes (such as: patches, shims, fixes), or just

searching for specific target executables or DLLs.

Below is a menu which shows many of the options in summary form:

Copyright © TZWorks LLC Sep 9, 2015 Page 6

All the compatibility fixes will be rendered in XML output, while the statistics options can be done in

either unformatted text or CSV output. The various options and how they can be used, are discussed in

the sections below.

Copyright © TZWorks LLC Sep 9, 2015 Page 7

3.1 Quick-look Report for a Database

When analyzing a database, one can pull the statistics about the database and its composition by

running the -stats command. Below is an example of running shims on one of the Volume shadow

copies and truncating the output to display the global shim database (sysmain.sdb).

The output shows the various timestamps of the SDB file as well as the last time the database was

updated (via the internal database timestamp labeled Database ModTime). Included in the database

summary are the following: the version number, MD5/SHA1 hashes, identifier, and a number of other

stats about the contents within it, such as the occurrences of the differing fixes and other elements.

From empirical data, the database identifier either uses a class GUID or uses a custom unique GUID. For

example, both the sysmain.sdb and the appraiser.sdb databases appear to be always classified as

11111111-1111-1111-1111-111111111111. Other databases seem to have common GUIDs as well.

Below is a table of some of the common GUIDs we have found from empirical analysis.

SDB name Type GUID

sysmain[null|32|64].sdb,
appraiser.sdb,
sysmain[32|64]runtime.sdb

App Compatibility Fix D/B 11111111-1111-1111-1111-111111111111

drvmain[null|32|64].sdb Driver Compatibility D/B f9ab2228-3312-4a73-b6f9-936d70e112ef

pcamain.sdb Program Compatibility Assistant D/B 667fc0e7-8d3e-4013-977e-7f9af3a5a5df

msimain.sdb System Installer Compatibility D/B d8ff6d16-6a3a-468a-8b44-01714ddc49ea

KeyboardFilterShim.sdb Embedded Keyboard Filter D/B 709f8b46-ee6f-4948-bc89-cc1653ac6762

apphelp.sdb App Compatibility Message D/B 22222222-2222-2222-2222-222222222222

apph_sp.sdb App Compatibility Message D/B - Service Pack 44444444-4444-4444-4444-444444444444

Copyright © TZWorks LLC Sep 9, 2015 Page 8

One can repeat this by collecting a number of shim databases from various versions of Windows

operating systems into a directory for analysis, and then piping in the directory into the shims tool using

the -pipe and -stats commands together. The -stats command also allows one to use the

options: -csv, -csvl2t, -csv_separator, -dateformat, -timeformat.

Custom shims have some additional statistics that come from their respective registry entries. Of

interest are: (a) the shim database ‘install’ timestamp and (b) when the subkey for the registry entry was

modified. Below is an example of where these additional timestamps are populated in the stats output:

3.1.1 Statistics for Mounted System Volume or Volume Shadow

If one just wants to enumerate all the shim databases in the conventional directories as well as any

custom shim databases, one can use the -partition option and the -vss option. The first option will

Copyright © TZWorks LLC Sep 9, 2015 Page 9

analyze the specified system partition, and the second option will analyze the specified volume shadow.

Below are examples:

shims -partition “c” -stats -csv

shims -vss 1 -stats –csv

3.2 Searching Strings

The string search is case-insensitive and looks for partial strings. The search will default to scanning all

application type tags. As an example, let’s say one wanted to analyze all the entries that make up the

Compatibility Fix name, such as “InjectDLL” or “RunAsAdmin”. To search multiple strings, just use a pipe

delimiter between the strings you want to search on. If one of the substrings is found, the application

that included the substring is returned so that one can see the context of where it was used. Below is an

example of performing this search on a Windows system volume.

Copyright © TZWorks LLC Sep 9, 2015 Page 10

In this case, four application entries are found and the output is rendered in XML. Annotated are the

locations of where the specified strings were found.

3.3 Searching GUIDs

The Shim database makes use of GUID identifiers for three main types of tags: executables,

applications, and fixes. It should be noted that the executable GUID identifier is independent of the

application GUID identifier, however all executable containers also include an application identifier.

From the empirical data, the application GUID is used to group similar executables where each

executable can have a different (or the same) name, but have different executable GUIDs. When viewed

in the Microsoft Compatibility Administrator, the Applications folder contains folder instances of

application GUID IDs, where each folder is a collection of unique executable GUID IDs (Note: the GUID

for the application and executable are not the same). The previous screen shot shows this for the first

application entry. Unfortunately, the Compatibility Administrator tool does not show the GUIDs of the

items.

Instead of repeating the search using one of the GUIDs shown from the previous example, we will use

the application identifiers used for the Skype application. To find which GUIDs are used in the database,

one can do an initial scan for all GUIDs by using the -guids switch. Below is the type of output you

would get by invoking this command:

The above output is broken out by exeid (for executable identifiers), appid (for application identifiers),

and fixid (for fix identifiers). For this example, we will pull the Skype application identifier (eg.

9431548c-b3d7-4f2e-83f1-a8da0a0c0f97) and search on that. Below are the results. Alternatively, we

could have done a string search on “skype”, but the results most likely would have included other

entries that were not designated with this application identifier.

Copyright © TZWorks LLC Sep 9, 2015 Page 11

3.4 Searching TagIDs

Internally, the Shims database uses tag identifiers to identify certain elements in the database. From

empirical analysis, this TagID turns out to be the offset into the database where the element is located.

Therefore, one can arbitrarily assign the offset of the element as the TagID. This provides a unique key

for each element when creating an associative array for indexing purposes. Therefore, if you know the

TagID of an element, shims can easily look-up the element associated with that TagID and output the

resulting data.

To visually see where TagIDs are used (from our perspective) and how they are lined up with a

container, we will look at the first executable from the previous example, which is GUID d94f7ff5-1099-

4f52-baa6-2b01b79a24f0. Using our internal (non-public) options, we show how the shims tool dissects

this entry and identifies each element. The highlighted column shows the mapping of TagID to each

element. Therefore, if a database entry used a TagID to reference a fix, shim, or whatever, it is

straightforward to find it within the database and merge it. Suffice to say, using and searching on

TagIDs is something useful to the reverse engineers.

Copyright © TZWorks LLC Sep 9, 2015 Page 12

3.5 Pulling out Specific List Type Tags

A Shim database has all sorts of tags that can be searched on. The shims tool only has shortcut options

for some of the more basic tags. For example: -exes for TAG_EXE, -apps for TAG_APP, -patches for

TAG_PATCHES and a few others. There are many other tags that are available, such as TAG_APPHELP

(0x700d), TAG_KDRIVER (0x701c), etc, which we do not have menu shortcuts. However, one can use

the -tag option to enumerate some of these. Many of these are documented on the Microsoft website

at: (http://msdn.microsoft.com/en-us/library/bb432487). The -tag <tag number> currently only

handles some of the TAG_TYPE_LIST items. Below is a table of some of the ones that can be used.

TAG_TYPE_LIST types handled Menu option Purpose

TAG_SHIM -shims Shim entry

TAG_PATCH -patches In-memory (hot-patch) info

TAG_APP -apps Application entry

TAG_EXE -exes Executable entry

TAG_LAYER -layers Layer shim entry

TAG_MSI_FLAG -flags Flag entry to enable built-in fixes

TAG_MATCHING_FILE -tag 0x7008 Matching file entry

http://msdn.microsoft.com/en-us/library/bb432487

Copyright © TZWorks LLC Sep 9, 2015 Page 13

TAG_FILE -tag 0x700c File attributed used in a shim entry

TAG_APPHELP -tag 0x700d Application help info entry

TAG_LINK -tag 0x700e Application help on-line link info entry

TAG_DATA -tag 0x700f Name-value mapping entry

TAG_MSI_TRANSFORM -tag 0x7010 MSI transform entry

TAG_MSI_PACKAGE -tag 0x7012 MSI package entry

TAG_MSI_CUSTOM_ACTION -tag 0x7014 MSI custom action entry

TAG_LOOKUP -tag 0x7017 Lookup entry in a driver database

As an example, to enumerate all the TAG_FLAG’s, one normally would use the -flags option, however,

one could also use the option -tag 0x7013 (0x7013 equates to TAG_FLAG) as part of the command. The

TAG_FLAG is actually interesting, in that its presence indicates which built-in Compatibility fix to turn on.

Shown below what one would see if enumerating the flag entries. Highlighted is the flag entry

RunAsAdmin Compatibility fix.

3.6 Searching Patches

The fixes in the Shim database come in a variety of types (shims, flags, quirks, etc.), where patches are

just but one. Focusing on patches, there are two types of patch entries in Shim databases: (a) Those

that are patch sequences that need to be found in the target file and (b) those that are patch sequences

that are meant to replace the sequence found. In addition, the patch entry has the binary location in

the target file where to look and also where to apply the patch. This location is called the RVA which

just equates to the relative virtual address.

Below is a simple patch example that replaces 4 bytes (39 c3 7c da) with NOPs (90 90 90 90) at the RVA

of 0x0003856f. In this particular patch, the module name is not explicitly listed, which then defaults to

the one of the matching file names.

Copyright © TZWorks LLC Sep 9, 2015 Page 14

Some of the patches do not have assembly opcodes, but could just target constants or strings. For

example, this next patch clears out two of the video options from a codec DLL module with the name of

tm20dec.ax. From the patch data shown below, there are 2 pairs of match/replace entries. One can see

this by looking at the matching RVA for each pair. The first pair starts by looking for the byte sequence

“55 59 56 59”, which equates to the ASCII characters 'UYVY'. The second pair starts by looking for the

byte sequence “59 55 59 32”, which equates to the ASCII characters 'YUY2'. Both of these happen to be

video formats. The 'replace' portion for both of the matches are a sequence of “2d 2d 2d 2d”, which

equates to the ASCII characters '----', to evidently remove the video format options, should their

companion match condition be satisfied.

Copyright © TZWorks LLC Sep 9, 2015 Page 15

As a final example, to show how the pattern matching rules allow for a pattern sequence with gaps, the

byte pattern of “ff 15 20 90 ?? ?? 89 1e” is scanned for at the RVA of 0x4fe5. The ‘??’ are just wildcards

in the notation above. This wildcard sequence is implemented, in this case, by using a pair of ‘match’

patterns at the appropriate RVA offsets to create the gap for the wildcards. This pair of match entries is

followed by one ‘replace’ pattern that covers the full size covered by the match-pair and substitutes

NOPs in their place.

Using various combinations of 'match/replace' entries, it is relatively straight forward to come up with

any number of patterns to filter and act on. While not strictly necessary, a companion part of the

Application Compatibility architecture is creating hot-patch points (or stubs) within a binary for each

program or library entry point.

3.6.1 Microsoft Hot-Patching

Microsoft designs some of their functions to be dynamically hot-patched. This was first seen in the early

examples of 32bit functions using the byte pattern “8b ff ..” at the beginning of the function. Further,

the function was preceded by 5 NOPs (0x90) or breakpoints (0xcc) bytes. In fact, the Visual Studio

development platform from Microsoft allows developers to build binaries with hot-patching built in as a

normal course, using the /hotpatch and /functionpadmin options during compiling and linking,

respectively. Since the /hotpatch option only guarantees that each function’s first instruction is at least

2 bytes, the “8b ff” pattern is seen when the function starts with a 1 byte instruction. The NOP byte

sequence is shown below, with the 2 byte pad added by the /hotpatch compile option:

The function above starts with the byte sequence (8b ff), which translates to moving the contents of the

EDI register to itself. While this is a completely meaningless statement, it acts as filler bytes. From a

hot-patch standpoint, these two filler bytes can be used by replacing them with a two byte jump

instruction that jumps backward 5 bytes to redirect control to the five bytes of patch space that comes

immediately before the start of each function. During the hot-patch operation, the five NOP bytes (or

breakpoint bytes if using 0xcc) are replaced with a full jump instruction that can go anywhere in the

code execution space (a 32 bit operating system is assumed here). So if one was to do a hot-patch and

call some other routine, something like this could be done. Below is what the hot-patch operation

Copyright © TZWorks LLC Sep 9, 2015 Page 16

would result in if wishing to JMP to address 0xdebf9. The arrow below shows the start of the original

function.

3.6.2 Scanning for Patch Patterns

To assist in searches for patches, one uses the -patchbytes option. The argument is the sequence of

bytes one would like to find. The bytes are represented by hexadecimal notation and each byte is

separated with a space. The entire sequence of bytes is then encompassed in double quotes. To look

for a certain patch, it is useful to understand assembly language, since the byte sequence could

represent the mnemonic opcodes used in the patch.

3.7 PE Metadata

When it comes to finding if a fix or patch targets a particular PE file, one needs access to the PE

metadata to see if there is a match. Shims includes an option -pe <filename> -stats for looking at some

of the more common PE metadata used in the matching syntax. Below is the type of data this option

produces.

Similar to the SDB stats, this option also allows one to use the

options: -pipe, -csv, -csv_separator, -dateformat, -timeformat. The -pipe option is useful if wishing to

pull many PE file matching stats in one run.

Copyright © TZWorks LLC Sep 9, 2015 Page 17

3.7.1 Matching PE Metadata with Shim Entries

One of the requirements of the Application Compatibility framework is to scan the metadata in every PE

file during their load operation and compare it to any of the Shim Databases active on the system at that

time. This is required to see if an executable, DL,L or driver PE file needs to be considered for a fix-up

operation. To test out this with the shims tool, there is an experimental -match option to take in a

desired PE file with companion Shim database to see if any entries in the Shim database target this

particular PE file. Since this option only covers some of the parameters identified in the Shim Database

used for matching, it should be considered prototype in nature and the results should not be considered

definitive.

3.8 Parsing Collections of SDB files

There are 3 basic options for parsing a collection of SDB files: (a) targeting a particular system volume,

(b) targeting a Volume Shadow copy, and (c) targeting a directory and its subdirectories that has a

collection of SDB file.

3.8.1 Targeting a System Volume

If desiring to just parse a system volume without the fuss of finding each Shim database, one can use

the -partition <volume letter> option to look in the conventional locations for SDB databases. The

volume letter would normally be the c: volume for a live system collect, but it can also be a mounted

volume from a system image from another computer.

3.8.2 Targeting a Volume Shadow Copy

To target a Volume Shadow copy, use the -vss <#> option, where the <#> is the index of the targeted

Volume Shadow. The shims tool will scan the registry for custom Shim database locations as well as look

in the conventional locations to find SDB files and parse them all in one session.

3.8.3 Targeting Directories

To target a specific directory (or a nested set of subdirectories within a parent director) that contains

many SDB files, one can use the -pipe option. The first is used to gather statistics about all the SDB files

and renders the output in CSV notation. The second pulls all the applications’ entries from all the SDB

files and renders the output in XML format.

dir e:\sdbfiles*.sdb /b /s | shims -pipe -csv -stats > stats1.csv

dir e:\sdbfiles*.sdb /b /s | shims -pipe -apps > apps.txt

Copyright © TZWorks LLC Sep 9, 2015 Page 18

4 Comparing the Application Compatibility Administrator to the shims

tool
There are two Compatibility Administrator tools: (a) one for 32 bit databases and (b) one for 64 bit

databases. Below is the 32 bit version of the tool, looking at the default 32 bit database on a Win7

operating system, 64 bit install. One can see the number of fixes, modes, and applications the 32 bit

default database handles by looking at the stats in the lower bottom of the dialog window.

Running the shims tool against the same SDB file and using the -stats option, yields the following

information.

Copyright © TZWorks LLC Sep 9, 2015 Page 19

Comparing the two outputs shows a couple of things: (a) the Compatibility Fixes in the Microsoft tool

include both the entries of type shim entries and type flag, (b) the Compatibility Mode correlates to the

entries of type layer, and (c) the Applications correlate to the entries of type app name. For the last

one, the Application does not directly correlate to the entries of type exe. The reason for the mismatch

is an Application entry can include 1 or more exe type entries (as well as other types). To see this, one

can look at a few of the Application entries in the Compatibility Administrator tool. For the Application

Entry ‘000 Test Entries’ there contains four exe entries.

If one looks at the companion entry in the shims tools, one can do this by searching on the string “000

Test Entries” and examining the output. Below is an example of doing this and one can see the data that

is in the Microsoft tool is a subset of the data in the shims tool.

Copyright © TZWorks LLC Sep 9, 2015 Page 20

5 Available Enumeration Options

Option Extra Description

-apps **
Enumerate application category entries. This includes, but is not limited

to, the following types: exe, packages, msi_packages.

-exes ** Enumerate executable category entries (TAG_EXE)

-fixes **
Enumerate the various types of fixes, including but not limited to: shims,

patches, flags, layers, etc.

-shims ** Enumerate shim category entries (TAG_SHIM).

-patches ** Enumerate patch category entries (TAG_PATCH).

-layers ** Enumerate layer category entries (TAG_LAYER).

-flags ** Enumerate flag category entries (TAG_FLAG).

-tag ***
Enumerate the specified tag. Needs to be of type TAG_LIST_LIST. The

syntax is -tag <#>

-guids **
Enumerate all GUIDs in the database along with the name associated with

the GUID

-stringtable ** Enumerate all the strings in the string table

6 Available Find Options

Option Extra Description

-strings **

Search for the specified partial strings. If more than one partial string is

listed, then use a pipe delimiter between each string and enclose the entire

set of strings between double quotes. Will search using case-insensitive

logic and will look for partial strings.

-guid **
Search for the specified GUID. The GUID syntax is 11111111-1111-

1111-1111-111111111111.

-tagids ***
Search for the specified tagid’s. More than one tagid can be searched on

as long as the entire set of tag identifiers are enclosed in quotes and

delimited by the pipe character.

-patchbytes *** Search for the specified byte pattern in the available patches

-match ***
Experimental. Used in conjunction with the -pe <PE File> option, to

search the specified Shim DB for possible shims to the specified PE file.

Copyright © TZWorks LLC Sep 9, 2015 Page 21

7 Miscellaneous Options

Option Extra Description

-vss ***

Experimental. Parse SDB artifacts from Volume Shadow. The syntax is -vss
<index number of shadow copy>. Only applies to Windows Vista, Win7,
Win8 and beyond. Does not apply to Windows XP.

-stats

Output a set of summary statistics about the Shim DB. Syntax is -sdb

<db> -stats. This option also is aware of the following sub-options: -reg

<sw hive> (to pull stats from the hive as well), -csv (for CSV

output), -csvl2t (for log2timeline output), -timeformat, -dateformat,

and -csv_separator.

-pe

Specifies the target file is a PE file vice a Shim DB file. Used in

conjunction with the -stats option (eg. -pe <file> -stats) and the -match

option (eg. -pe <file> -match –sdb <shim db>).

-pipe **
Used to pipe files into the tool via STDIN (standard input). Each file
passed in is parsed in sequence.

8 Sub Options that can be used with the –stats Option

Option Extra Description

-reg
Pull Application Compatibility data related to custom shim databases
from the specified Software hive. Syntax is -reg <sw hive>.

-csv

Outputs the data fields delimited by commas.

-csvl2t Outputs the data fields in accordance with the log2timeline format.

-csv_separator **

Used in conjunction with the -csv option to change the CSV separator
from the default comma to something else. Syntax is -csv_separator "|"
to change the CSV separator to the pipe character.

-no_whitespace **
Used in conjunction with -csv option to remove any whitespace between
the field value and the CSV separator.

-hostname **
Option is used to populate the output records with a specified hostname.
The syntax is -hostname <name to use>.

-dateformat **

Output the date using the specified format. Default behavior is -
dateformat "mm/dd/yyyy". This allows more flexibility for a desired
format. For example, one can use this to show year first, via
"yyyy/mm/dd" or day first, via "dd/mm/yyyy", or only show 2 digit
years, via the "mm/dd/yy". The restriction with this option is the forward
slash (/) symbol needs to separate month, day and year and the month is

Copyright © TZWorks LLC Sep 9, 2015 Page 22

in digit (1-12) form versus abbreviated name form.

-timeformat **

Output the time using the specified format. Default behavior is -
timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,
via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is
that a colon (:) symbol needs to separate hours, minutes and seconds, a
period (.) symbol needs to separate the seconds and fractional seconds,
and the repeating symbol 'x' is used to represent number of fractional
seconds. (Note: the fractional seconds applies only to those time formats
that have the appropriate precision available. The Windows internal
filetime has, for example, 100 nsec unit precision available.

9 Authentication and the License File

This tool has authentication built into the binary. There are two authentication mechanisms: (a) the

digital certificate embedded into the binary and (b) the runtime authentication. For the first method,

only the Windows and Mac OS-X (if available) versions have been signed by an X-509 digital code signing

certificate, which is validated by Windows (or OS-X) during operation. If the binary has been tampered

with, the digital certificate will be invalidated.

For the second (runtime authentication) method, the authentication does two things: (a) validates that

the tool has a valid license and (b) validates the tool's binary has not been corrupted. The license needs

to be in the same directory of the tool for it to authenticate. Furthermore, any modification to the

license, either to its name or contents, will invalidate the license. The runtime binary validation hashes

the executable that is running and fails the authentication if it detects any modifications.

10 References

1. Microsoft Application Compatibility Toolkit: https://msdn.microsoft.com/en-

us/library/windows/desktop/dd562082(v=vs.85).aspx

2. Various MSDN articles, including but not limited to:

a. Application Compatibility Database: http://msdn.microsoft.com/en-
us/library/bb432182(v=vs.85).aspx

b. Tag Types: http://msdn2.microsoft.com/en-us/library/bb432490
c. Tags: http://msdn.microsoft.com/en-us/library/bb432487

3. Secrets of the Application Compatibility Database (SDB) parts 1-4, by Alex Ionescu. Ref: http://www.alex-
ionescu.com/.

http://msdn.microsoft.com/en-us/library/bb432487
http://www.alex-ionescu.com/
http://www.alex-ionescu.com/

