
Memory analysis is the decisive victory on
the battlefield between o�ense and defense,
giving the upper hand to incident responders

by exposing injection and hooking techniques
that would otherwise remain undetected.

Memory Analysis will prepare your
team to:
• Discover zero-day malware
• Detect compromises
• Uncover evidence that others miss

Memory Forensics
Analysis Poster

The Battleground Between
Offense and Defense digital-forensics.sans.org
DFPS_FOR526_v2.5_4-19

Rekall Memory Forensic Framework
The Rekall Memory Forensic Framework is a collection of memory
acquisition and analysis tools implemented in Python under the GNU
General Public License. This cheatsheet provides a quick reference for
memory analysis operations in Rekall, covering acquisition, live memory
analysis, and parsing plugins used in the Six-Step Investigative Process. For
more information on this tool, visit rekall-forensic.com.

Windows® Memory Acquisition (winpmem)
CREATING AN AFF4 (Open cmd.exe as Administrator)
C:\> winpmem_<version>.exe -o output.aff4

INCLUDE PAGE FILE
C:\> winpmem_<version>.exe -p c:\pagefile.sys -o output.aff4

EXTRACTING THE RAW MEMORY IMAGE FROM THE AFF4
C:\> winpmem_<version>.exe output.aff4 --export PhysicalMemory -o memory.img

EXTRACTING TO RAW USING REKALL
$ rekal -f win7.aff4 imagecopy --output-image=”/cases/win7.img

OTHER WINPMEM OPTIONS
view aff4 metadata (-V)| elf output (--elf)

Process Enumeration
PSLIST Enumerate processes

Rekall uses 5 techniques to enumerate processes by default
(PsActiveProcessList, sessions, handles, CSRSS, PspCidTable)
[1] image.img 11:14:35> pslist

 Narrow the process enumeration using “method=”
[1] image.img 11:14:35> pslist method=
”PsActiveProcessHead”

 Customize pslist output with efilters
[1] image.img 11:14:35> select
EPROCESS,ppid,process_create_time from pslist()
order by process_create_time

PROCINFO Display detailed process & PE info
[1] image.img 11:14:35> procinfo <PID>

DESKTOPS Enumerate desktops and desktop threads
[1] image.img 11:14:35> desktops verbosity=<#>

SESSIONS Enumerate sessions and associated processes
[1] image.img 11:14:35> sessions

THREADS Enumerates process threads
[1] image.img 11:14:35> threads proc_regex= ”chrome”

DT Displays Specific Kernel Data Structures
[1] image.img 11:14:35> dt(“_EPROCESS”)

Malicious Code Detection
IDENTIFY SUSPICIOUS PROCESSES by COMMAND LINE
PSTREE (WITH VERBOSITY) – List processes with path and command line
[1] be.aff4 11:14:35> describe(pstree) - View columns to output
[1] be.aff4 11:14:35> select _EPROCESS,ppid,cmd,path from pstree()

DETECT CODE INJECTION by VAD ANALYSIS
MALFIND Find injected code and dump sections

<pid> Positional Argument: Show information only for specific PIDs
phys_eprocess= Provide physical offset of process to scan
eprocess= Provide virtual offset for process to scan
dump_dir= Directory to save memory sections
 [1] be.aff4 11:14:35> malfind eprocess=0x853cf460,dump_dir=”/cases”

LDRMODULES Detect unlinked DLLs
verbosity= Verbose: show full paths from three DLL lists
 [1] be.aff4 11:14:35> ldrmodules 1936

Getting Started with Rekall
Single Command Example
$ rekal -f image.img pslist

Starting an Interactive Session
$ rekal -f image.img

[1] image.img 11:14:35>[1] image.img 11:14:35>[1] image.img 11:14:35>[1] image.img 11:14:35>[1] image.img 11:14:35>[1] image.img 11:14:35>[1] image.img 11:14:35>

current imagesession # local system time

Extracting Process Details
DLLLIST List of loaded dlls by process.

Filter on specific process(es) by including the process identifier <PID> as a positional argument
[1] image.img 11:14:35> dlllist [1580,204]

HANDLES List of open handles for each process include pid or array of pids separated by commas
object_types=”TYPE” – Limit to handles of a certain type {Process, Thread, Key,
Event, File, Mutant, Token, Port}
[1] image.img 11:14:35> handles 868, object_types=”Key”

FILESCAN Scan memory for _FILE_OBJECT handles
[1] image.img 11:15:35> filescan output=”filescan.txt”

Subverting Memory Acquisition
Dementia by Luka Milkovic
An impressive advancement in “anti-analysis” research was presented by Luka Milkovic at the 29th Chaos Communication Congress in December 2012. His
tool, Dementia, evades memory capture by intercepting NtWriteFile() calls through the use of inline hooking and a file system mini-filter. The bu�er of a
memory acquisition tool is manipulated so that any reference to the target process and its kernel objects is removed and the resultant memory image file has
no evidence of this running process.
For more on this, visit: https://events.ccc.de/congress/2012/Fahrplan/attachments/2231_Defeating%20Windows%20memory%20forensics.ppt

Anti-Analysis: Spinning the Wheels of the Forensic Examiner
Attention Deficit Disorder by Jake Williams
Another anti-memory analysis POC is ADD (Attention Deficit Disorder), written by Jake Williams. This tool creates fake EPPROCESS, TCP_Endpoint, and
FILE_OBJECT structures in memory that lead the examiner down rabbit holes where files may appear to be loaded into system memory or where network
connections to rogue IP/domains may appear to exist. As with the arms race of malware sophistication and the reversing skills of our ninja malware engineers,
anti-analysis techniques will continue to push the edge of forensic detection.
For more on this, visit: http://malwarejake.blogspot.com/2014/01/analysis-of-add-ref-image-part-1.html

Evasion of Malicious Code Detection Techniques
Gargoyle by Josh Lospinoso
One of the methods we use to identify code injection (see Step 4 above) is to look for executable memory that is not mapped to disk. Gargoyle implements
a unique proof of concept evasion technique, writing malicious code into read/write only memory, then using an Asynchronous Procedure Call based on a
timer that calls a ROP gadget to invoke VirtualProtectEx to change protections to RWX. After Gargoyle executes, it again calls VirtualProtectEx to return to RW
protections to further evade detection.
For more on this, visit: https://github.com/JLospinoso/gargoyle

Counters to Memory Forensics:
Modern Anti-Analysis Techniques

Tip

Tip for Parsing a Memory Image
with an Encoded KDBG:

Windows 8 and later (x64)
encode the KDBG, a key
structure tremendously useful
for memory forensics. To
more easily analyze these
memory images, an examiner
should supply the offset
for the KdCopyDataBlock,

identified with kdbgscan,
to speed Volatility’s ability

to identify the KiWaitNever
and KiWaitAlways values and

interpret the KDBG data structure.

Six-Step Investigative
Methodology

Identify rogue
processes 1

Analyze
process DLLs
and handles

2

Review network
artifacts 3

Look for
evidence of

code injection
4

Check for signs
of a rootkit 5

Dump suspicious
processes

and drivers
6

Recover Memory-Resident Evidence of Execution:
Shimcachemem
by Fred House, Andrew Davis, and Claudiu Teodorescu
The use of shimcache artifacts in many investigations has been limited because
data is not updated in the registry until the system is shut down. As a winning
submission to the 2015 Volatility plugin contest, these researchers authored a
parsing plugin that extracts these entries from the Application Compatibility
Cache database in module or process memory. Despite changes in structure
and the method of organization of these entries across versions of Windows,
shimcachemem supports versions from WinXPSP2 to Windows2012R2.
$ vol.py -f test.img --profile=Win8SP1x64 -g 0xf8004f6569b0 shimcachemem

Decompress Win 8+ Hiberfil.sys and Carve
Hibernation Slack: Hibernation Recon
Hibernation Recon by Arsenal Recon
Hibr2Bin by Comae Technologies
Hibernation files can be a treasure trove of forensic artifacts
in investigations of all types. We encountered a hurdle to
our analysis when Windows 8 introduced the LZ Huffman
XPRESS compression method for storing the contents of
physical memory for a hibernating machine. Our tools at the time could not
decompress, barring us from unearthing system state analysis for the time of
hibernation. Arsenal Recon and Comae Technologies introduced decompression
tools recently that allow examiners to analyze this dataset.

Physical to Virtual Address Translation
strings by Volatility Framework
ptov or pas2vas by Rekall
To map keywords identified by Bulk_Extractor or the strings tool, to their
owning process or kernel module, we must perform physical to virtual address
translation. Both Rekall and Volatility offer plugins that provide this ptov
functionality. With Volatility, we can invoke the strings plugin. Rekall has two
different plugins that offer physical to virtual address translation, ptov and
pas2vas. These plugins employ different methods in determining which process
has been allocated the frame in physical memory where the keyword lies. Regardless of the
method used, the end result is a reverse lookup of keyword to owning process.
$ rekal -f test.img ptov 21732272

Recover Text from Windows Edit Controls
editbox by Adam Bridge
Extracting the relevant contents of applications with Edit controls, such as notepad was a difficult
challenge until the introduction of the editbox plugin. Based on the research of Adam Bridge,
we can now uncover urls fields, undo buffers, and undo text entered in the Run dialogue box.
$ vol.py -f memory.img --profile=<profile> editbox

Identify Known Malware Based on Import API Fuzzy Hashing: impfuzzy
impfuzzy by JPCERTCC
Signatures for malicious binaries extracted from the file system are not applicable to memory
analysis, due to changes that occur when a PE file is loaded into memory. By using fuzzy hash
of the Import API table, as performed by impfuzzy, we can identify the presence of previously
signatured malware in new memory samples.
$ vol.py -f memory.img --profile=<profile> impfuzzy -p <pid>

Comprehensive Process and VAD Analysis
psinfo by Monnappa K A
Often during memory analysis, an examiner will enumerate processes multiple ways in order to gain
insight into its functions and characteristics. Instead of requiring multiple runs of different plugins,
psinfo provides process and VAD analysis in one.
$ vol.py -f memory.img --profile=<profile> psinfo -p <pid>

Bulk_Extractor

Rekall’s ptov

Advances in Memory Forensics

@sansforensics sansforensics dfir.to/MAIL-LISTdfir.to/DFIRCast

O P E R AT I N G
S Y S T E M &
D E V I C E
I N - D E P T H

I N C I D E N T
R E S P O N S E
& T H R E AT
H U N T I N G

FOR498
Battlefield

Forensics & Data
Acquisition

FOR500
Windows Forensic

Analysis
GCFE

FOR518
Mac and iOS

Forensic Analysis
and Incident

Response

FOR526
Advanced Memory

Forensics &
Threat Detection

FOR585
Smartphone Forensic

Analysis In-Depth
GASF

FOR508
Advanced Incident
Response, Threat Hunting,
and Digital Forensics
GCFA

FOR572
Advanced Network
Forensics: Threat
Hunting, Analysis, and
Incident Response
GNFA

FOR578
Cyber Threat Intelligence
GCTI

FOR610
REM: Malware Analysis
GREM

SEC504
Hacker Tools,
Techniques, Exploits,
and Incident Handling
GCIH

2

1

3

5

9

8

7

6

4

7

System Process DTB
(directory table base)
The directory table base of a process points to the base of
the page directory table (sometimes called the page directory
base, or PDB). The CR3 register points to this location, which
is unique per process. From the DTB, the complete list of the
processes’ page tables can be discovered. Rekall locates the DTB
for the Idle process (the Idle process is really just an accounting
structure), then uses this to find the image base of the kernel.
Then, the KDBG (if needed at all) can be found deterministically,
rather than using the scanning approach to find the KDBG
used by Volatility. From the Idle process DTB, all other required
structure offsets can be determined.

3

_LDR_DATA_TABLE_ENTRY
• DllBase – The base address of the DLL

• EntryPoint – Entry point of the DLL.

• SizeOfImage – Size of the DLL in memory

• FullDllName – Full path name of the DLL

• TimeDateStamp – The compile time stamp for the DLL

5

1

Kernel Debugger Data Block
(_KDDEBUGGER_DATA64)
• PsLoadedModuleList – Pointer to the list of loaded kernel modules

• PsActiveProcessHead – Pointer to the list head of active processes

• PspCidTable – Table of processes used by the scheduler

• MmUnloadedDrivers – List of recently unloaded drivers

2
Unloaded Drivers
• Name – Driver name

• StartAddress –Start address where driver was loaded

• EndAddress – End address where driver was loaded

• CurrentTime – Time when driver was unloaded

88
_LDR_DATA_TABLE_ENTRY

 – Pointer to the list of loaded kernel modules

 – Pointer to the list head of active processes

 – Table of processes used by the scheduler

 – List of recently unloaded drivers

 –Start address where driver was loaded

 – End address where driver was loaded

 – Time when driver was unloaded

 –Start address where driver was loaded

 – End address where driver was loaded

444

66

99

_MMVAD
• LeftChild – Pointer to the left VAD child

 RightChild – Pointer to the right VAD child

• StartingVpn – Starting address described by VAD

• EndingVpn – Ending address described by VAD

 VadsProcess – Pointer to the _EPROCESS block
that owns this VAD

 – Pointer to the left VAD child

Process Environment Block (_PEB)
• BeingDebugged – Is a debugger attached to the process

• ImageBaseAddress – Virtual address where the executable is loaded

 Ldr – Pointer to _PEB_LDR_DATA structure

• ProcessParameters – Full path name and command-line arguments

Process Struct (_EPROCESS)

• Pcb – Process control block

• CreateTime – Time when the process was started.

• ExitTime – Exit time of the process – process is still
stored in the process list for some time after it exits, which
allows for graceful deallocation of other process structures.

• UniqueProcessId – PID of the process

• ActiveProcessLinks – Doubly-linked list to other
process’ EPROCESS structures (process list)

• ObjectTable – Pointer to the process’ handle table

• Peb – Pointer to the process environment block

• InheritedFromUniqueProcessId – The parent PID

• ThreadListHead – List of active threads (_ETHREAD)

 VadRoot – Pointer to the root of the VAD tree

PEB Loader Data (_PEB_LDR_DATA)
 InLoadOrderModuleList – List of loaded DLLs

 InMemoryOrderModuleList – List of loaded DLLs

 InInitializationOrderModuleList – List of loaded DLLs

Note that many internal OS structures are doubly-linked lists. The pointers in the lists actually point to the pointer in the next structure. However,
for clarity of illustration, we have chosen to show the type of structure they point to. Also, note that the PsActiveProcessHead member of the KDBG
structure points to ActiveProcessLinks member of the _EPROCESS structure. However, for clarity, we depict the pointer pointing to the base of the
_EPROCESS structure. We feel that this depiction illustrates this more clearly.

What Lies Within: Windows
Memory
Analysis

We are in a cybersecurity arms race as incident responders, faced with a growing sophistication of threats, posed by actors
both internal and external to our environment. Our ability to effectively and efficiently detect and contain malicious actors
inside our environment hinges on visibility into the current system state of our endpoint. The details uncovered through
memory analysis allows us to baseline normal functions and spot significant anomalies indicative of malicious activity. This
poster provides insight into the most relevant Windows internal structures for forensic analysis. Though there are far more
members of each structure than shown here, these are the most pertinent for spotting malicious activity and subversion.

1) PsLoadedModuleList
The PsLoadedModuleList structure of the KDBG points to the list of loaded kernel modules
(device drivers) in memory. Many malware variants use kernel modules because they
require low level access to the system. Rootkits, packet sni�ers, and many keyloggers use
may be found in the loaded modules list. The members of the list are _LDR_DATA_TABLE_ENTRY
structures. Stuxnet, Duqu, Regin, R2D2, Flame, etc., have all used some kernel mode
module component – so this is a great place to look for advanced (supposed) nation-state
malware. However, note that some malware has the ability to unlink itself from this list, so
scanning for structures may also be necessary.
REKALL PLUGINS: modules, modscan

2) Unloaded Modules
The Windows OS keeps track of recently unloaded kernel modules (device drivers). This is
useful for finding rootkits (and misbehaving legitimate device drivers).
REKALL PLUGINS: unloaded_modules

3) VAD
VADs (Virtual Address Descriptors) are used by the memory manager to track ALL memory
allocated on the system. Malware and rootkits can hide from a lot of di�erent OS components,
but hiding from the memory manager is unwise. If it can’t see your memory, it will give it away!
REKALL PLUGINS: vad, vaddump

4) _EPROCESS
The _EPROCESS is perhaps the most important structure in memory forensics. The
_EPROCESS structure has more than 100 members, many of them pointers to other
structures. The _EPROCESS gives us the PID and parent PID of a given process. Analyzing PID
relationships between processes can reveal malware. For more information, see the SANS
DFIR poster “Know Normal, Find Evil.” The _EPROCESS block also contains the creation and
exit time of a process. Why would the OS keep track of exited processes? The answer is that
when a process exits, it may have open handles which must be closed by the OS. The OS
also needs time to gracefully deallocate other structures used by the process. The ExitTime
field allows us to see that a process has exited but has not yet been completely removed
by the OS. Note that the task manager and other live response tools will not show exited
processes at all, but they are easy to see with use of memory forensics!
REKALL PLUGINS: pslist, psscan, pstree

5) Process Environment Block
The PEB contains pointers to the _PEB_LDR_DATA structure (discussed below). It also contains a flag
that tells whether a debugger is attached to a process. Some malware will debug a child process as
an antireversing measure. Finally, the PEB also contains a pointer to the command line arguments
that were supplied to the process on creation.
REKALL PLUGINS: ldrmodules, dlllist, pstree verbosity=10

6) ObjectTable
For a process in Windows to use any resource (registry key, file, directory, process, etc.), it must
have a handle to that object. We can tell a lot about a process just by looking at its open handles. For
instance, you could potentially infer the log file a keylogger is using or persistence keys used by the
malware, all by examining handles.
REKALL PLUGINS: handles, object_types

7) ThreadListHead
Where are the thread list structures on the poster? Sorry, we just don’t have room to do them justice
– but most investigations don’t require us to dive into thread structures directly. Threads are still
important. though. In Windows, a process is best thought of as an accounting structure. The Windows
scheduler never deals with processes directly, rather it schedules individual threads (inside a
process) for execution. Still, you’ll find yourself using process structures more in your investigations.
REKALL PLUGINS: thrdscan, threads

8) _LDR_DATA_TABLE_ENTRY
This structure is used to describe a loaded module. Loaded modules come in two forms: the kernel
module (aka device driver) and dynamic link libraries (DLLs), which are loaded into user mode
processes.
REKALL PLUGINS: modules, ldrmodules, dlllist

9) PEB Loader Data
This structure contains pointers to three linked lists of loaded modules in a given process. Each
is ordered di�erently (order of loading, order of initialization, and order of memory addresses).
Sometimes malware will inject a DLL into a legitimate Windows service, then try to hide. But they’d
better hide from all three lists or, you’ll detect it with no trouble.
REKALL PLUGINS: ldrmodulesIn today’s enterprise investigations, memory forensics plays a crucial role in

unraveling the details of what happened on the system. Recent large-scale
malware infections have involved attackers implementing advanced anti-analysis
techniques, making the system memory the battleground between o�ense and
defense. Skilled incident responders use memory forensics skills to reveal
“ground truth” of malicious activity and move more swiftly to remediation.
Learn more about FOR526: Memory Forensics In-Depth at www.sans.org/FOR526

In today’s enterprise investigations, memory forensics plays a crucial role in

FOR526:
Memory Forensics
In-Depth
AUTHORS:
Alissa Torres
@sibertor

Jake Williams
@malwarejake

Security Protections
Kernel Patch Protection (aka PatchGuard)
Modern x64 Windows implements a functionality called Kernel Patch Protection
(sometimes referred to as PatchGuard). KPP checks key system structures, including
(but not limited to) the doubly-linked lists that track most objects on Windows. In
particular, KPP makes the DKOM rootkit technique of unlinking a process from the
process list obsolete. When KPP detects an unauthorized modification, it causes a
BSOD to halt the system. As a result, Windows kernel mode rootkits now use kernel
callbacks, Asynchronous Procedure Calls (APCs), and Deferred Procedure Calls (DPCs)
to run code instead of the old “launch a process and use DKOM to hide it” technique.

Kernel Object Obfuscation
Just as we do in memory forensics, many rootkits have relied on the KDBG to locate
key operating system structures. As of Windows 8, the KDBG is encrypted to prevent
rootkits from easily locating it. This does not impact operations since the KDBG is not
used during normal system operation. If the system crashes, the KeBugCheck routine
decrypts the KDBG before storing the crash dump data in the page file (making the
KDBG available for debugging purposes). Kernel object headers are also encrypted
in Windows 10. While intended to interfere with rootkits, this also has the e�ect of
inhibiting some scanning plugins.

