
P O S T E R

digital-forensics.sans.org
$25.00
DFPS_FOR610_v1.6_4-19
Poster Created by Lenny Zeltser and Rob Lee
with support of the SANS DFIR Faculty
©2019 Lenny Zeltser and Rob Lee. All Rights Reserved.

SIFT Workstation
An international team of forensics experts created the SIFT Workstation™ for incident
response and digital forensics-use and made it available to the community as a public service.
The free SIFT toolkit can match any modern incident response and forensic tool suite. It
demonstrates that advanced incident response capabilities and deep-dive digital forensic
techniques can be accomplished using cutting-edge open-source tools that are freely available
and frequently updated.

REMnux
REMnux® is a free Linux toolkit for assisting malware analysts with
reverse-engineering malicious software. It strives to make it easier
for forensic investigators and incident responders to start using the
variety of freely-available tools that can examine malware, yet might
be difficult to locate or set up.

The heart of the project is the REMnux Linux distribution based
on Ubuntu. This lightweight distro incorporates many tools for
analyzing Windows and Linux malware, examining browser-based
threats such as obfuscated JavaScript, exploring suspicious document files and taking apart
other malicious artifacts. Investigators can also use the distro to intercept suspicious network
traffic in an isolated lab when performing behavioral malware analysis.

The REMnux project also provides Docker images of popular malware analysis tools, so that
investigators can run these apps as containers even without installing the REMnux distro.

How to Install REMnux

The easiest way to get REMnux is to download its virtual appliance from https://remnux.org.
After importing it into your virtualization software, boot up the REMnux virtual machine
and, if you are connected to the Internet, run the “update-remnux full” command.
Alternatively, you can add REMnux software to an existing SIFT Workstation system. To do
that, run the following command on SIFT:

wget --quiet -O - https://remnux.org/get-remnux.sh | sudo bash

The REMnux website explains other ways to install the distro, which include adding it to a
compatible Ubuntu system or spinning it up in a public cloud environment.

Many of the tools and associated malware analysis techniques are taught in the following
SANS course:

FOR610: Reverse-Engineering Malware:
Malware Analysis Tools and Techniques

The SIFT workstation contains hundreds of free and open-source tools that can be used for
digital forensics and incident response. Many of the tools and associated analysis techniques
are taught in the following courses at SANS:

FOR508: Advanced Digital Forensics, Incident Response, and
Threat Hunting

FOR526: Advanced Memory Forensics & Threat Detection
FOR572: Advanced Network Forensics: Threat Hunting,

Analysis, and Incident Response
FOR578: Cyber Threat Intelligence

SANS DFIR Linux Distributions:

SANS DFIR Linux Distributions:

SANS faculty members maintain two popular Linux distributions for performing digital forensics and incident response (DFIR) work.
SIFT Workstation,™ created by Rob Lee, is a powerful toolkit for examining forensic artifacts related to file system, registry, memory,

and network investigations. REMnux®, created by Lenny Zeltser, focuses on malware analysis and reverse-engineering tasks.
These freely available toolkits can be combined on a single host to create the ultimate forensication machine.

How to Install SIFT

The easiest way to get the SIFT Workstation is by downloading a virtual machine instance
directly from the http://dfir.sans.org website. Alternatively, you can install SIFT on any Ubuntu
14.04 operating system using the following commands.

Once installed, open a terminal and run
wget --quiet -O - https://raw.github.com/sans-dfir/sift-
bootstrap/master/bootstrap.sh | sudo bash -s -- -i -s -y

Once installed, SIFT can be kept up-to-date by issuing the following command: update-sift

@sansforensics sansforensics dfir.to/MAIL-LISTdfir.to/DFIRCast

O P E R AT I N G
S Y S T E M &
D E V I C E
I N - D E P T H

I N C I D E N T
R E S P O N S E
& T H R E AT
H U N T I N G

FOR498
Battlefield

Forensics & Data
Acquisition

FOR500
Windows Forensic

Analysis
GCFE

FOR518
Mac and iOS

Forensic Analysis
and Incident

Response

FOR526
Advanced Memory

Forensics &
Threat Detection

FOR585
Smartphone Forensic

Analysis In-Depth
GASF

FOR508
Advanced Incident
Response, Threat Hunting,
and Digital Forensics
GCFA

FOR572
Advanced Network
Forensics: Threat
Hunting, Analysis, and
Incident Response
GNFA

FOR578
Cyber Threat Intelligence
GCTI

FOR610
REM: Malware Analysis
GREM

SEC504
Hacker Tools, Techniques,
Exploits, and
Incident Handling
GCIH

Getting Started with SIFT
When performing a response or an investigation, it is helpful to be reminded of the powerful tools
and options available to the analyst. Below is a selected reference to some popular free tools that are
available on the SIFT. Each of these commands runs locally.

• Mounting Images

• Mounting Volume Shadow Copies

• Windows Memory Analysis

• Recovering Data

• Creating Super Timelines

• The Sleuthkit

• Stream Extraction

Creating Super Timelines
log2timeline.py plaso.dump [SOURCE]

psort.py plaso.dump FILTER > supertimeline.csv

Example:

Step 1 – Create Comprehensive Timeline
log2timeline.py plaso.dump datafile.img

Step 2 – Filter Timeline
psort.py -z "EST5EDT" -o L2tcsv plaso.dump "date > 'YYYY-MM-DD HH:MM:SS' AND date <
'YYYY-MM-DD HH:MM:SS'" > supertimeline.csv

Mounting E01 Images
ewfmount datafile.E01 mountpoint

mount –o loop,ro,show_sys_
files,streams_interface=windows /mnt/
ewf/ewf1 /mnt/windows_mount

Mounting Volume Shadow Copies
Stage 1 – Attach local or remote system drive
ewfmount datafile.E01 /mnt/ewf

Stage 2 – Mount raw image VSS
vshadowmount /mnt/ewf/ewf1 /mnt/vss/

Stage 3 – Mount all logical filesystems of snapshot
cd /mnt/vss

for i in vss*; do mount -o ro,loop,show_sys_
files,streams_interface=windows $i /mnt/shadow_
mount/$i; done

Mounting DD Images
mount -t fstype [options] datafile.dd mountpoint

datafile.dd can be a disk partition or physical disk image

Useful Options:

ro mount as read only

loop mount on a loop device

noexec	 do	not	execute	files

ro mount as read only

loop mount on a loop device

offset=<bytes> logical drive mount

show_sys_files	 	show	ntfs	metafiles	

streams_interface=windows use ADS

Statically Examine Files
•			Inspect	file	properties	using	pescanner, pestr, pyew, readpe, pedump, peframe, signsrch,

and readpe.py

•			Investigate	binary	files	in-depth	using	bokken, vivbin, udcli, RATDecoders, radare2, yara,
and wxHexEditor

• Deobfuscate contents with xorsearch, unxor.py, Balbuzard, NoMoreXOR.py, brxor.py,
and xortool

• Examine memory snapshots using Rekall and Volatility

•			Assess	packed	files	using	densityscout, bytehist, packerid, and upx

•			Extract	and	carve	file	contents	using	hachoir-subfile, bulk_extractor, scalpel, foremost

•			Scan	files	for	malware	signatures	using	clamscan after refreshing signatures with freshclam

• Examine and track multiple malware samples with mas, viper, maltrieve, and Ragpicker

•			Work	with	file	hashes	using	nsrllookup, Automater, hash_id, ssdeep, totalhash, virustotal-
search, and vt

•			Define	signatures	with	yaraGenerator.py, autorule.py, IOCextractor.py, and rule-editor

Handle Network Interactions
•			Analyze	network	traffic	with	wireshark, ngrep, tcpick, tcpxtract, tcpflow, and tcpdump

•			Intercept	all	laboratory	traffic	destined	for	IP	addresses	using	accept-all-ips

•			Analyze	web	traffic	with	burpsuite, mitmproxy, CapTipper, and NetworkMiner

• Implement common network services using fakedns, fakesmtp, inetsim, ircd start,
and httpd start

Examine Browser Malware
• Deobfuscate JavaScript with SpiderMonkey (js), d8, rhino-debugger, and Firebug

•			Define	JavaScript	objects	for	SpiderMonkey	using	/usr/share/remnux/objects.js

• Clean up JavaScript with js-beautify

• Retrieve web pages with wget and curl

•			Examine	malicious	Flash	files	with	swfdump, flare, RABCDAsm, xxxswf.py, and extract_swf

• Analyze Java malware using idx_parser.py, cfr, jad, jd-gui, and Javassist

• Inspect malicious websites and domains using thug, Automater, pdnstool.py, and passive.py

Examine Document Files
•			Analyze	suspicious	Microsoft	Office	documents	with	officeparser.py, oletools, libolecf,

and oledump.py

•			Examine	PDFs	using	pdfid, pdfwalker, pdf-parser, pdfdecompress, pdfxray_lite, pyew,
and peepdf

•			Extract	JavaScript	or	SWFs	from	PDFs	using	pdfextract, pdfwalker, pdf-parser, and swf_mastah

• Examine shellcode using shellcode2exe.py, sctest, dism-this, unicode2hex-escaped, m2elf,
and dism-this.py

Investigate Linux Malware
• Disassemble and debug binaries using bokken, vivbin, edb, gdb, udcli, radare2, and objdump

• Examine the system during behavioral analysis with sysdig, unhide, strace, and ltrace

• Examine memory snapshots using Rekall and Volatility

• Decode Android malware using Androwarn and AndroGuard

Windows Memory Analysis – Rogue Processes Detection
psxview Find hidden processes using cross-view # vol.py psxview

pstree Display parent-process relationships # vol.py pstree

Windows Memory Analysis – Code Injection Detection
malfind	 	Find	injected	code	and	dump	sections

 -p Show	information	only	for	specific	PIDs	

 -o 	 	Provide	physical	offset	of	single	process	to	scan

 --dump-dir Directory to save memory sections
vol.py malfind --dump-dir ./output_dir

ldrmodules Detect unlinked DLLs

 -p 	 	Show	information	only	for	specific	PIDs

 -v Verbose: show full paths from three DLL lists
vol.py ldrmodules –p 868 -v

Stream Extraction
bulk_extractor <options> –o output_dir datafile.img

Useful Options:

-o outdir

-f <regex> regular expression term

-F <rfile> file	of	regex	terms

-Wn1:n2 extract words between n1 and
n2 in length

-q nn quiet mode

-e scanner enables a scanner

-e wordlist enable scanner wordlist

-e aes enable scanner aes

-e net enable scanner net

bulk_extractor -F keywords.txt –e net -e
aes -e wordlist -o /cases/bulk-extractor-
memory-output /cases/ memory.img

Sleuthkit Tools
File System Layer Tools (Partition Information)

fsstat	 	Displays	details	about	the	file	system
fsstat datafile.img

Data Layer Tools (Block or Cluster)

MetaData Layer Tools (Inode, MFT, or Directry Entry)

Filename Layer Tools

blkcat Displays the contents of a disk block
blkcat datafile.img block_num

blkls Lists contents of deleted disk blocks
blkls datafile.img > imagefile.blkls

blkcalc	 	Maps	between	disk	image	and	blkls	results
blkcalc datafile.img -u blkls_num

blkstat Display allocation status of block
blkstat datafile.img cluster_number

ils Displays inode details
ils datafile.img

istat	 	Displays	file	system	metadata	about	a	specific	inode
istat datafile.img inode_num

icat Displays contents of blocks allocated to an inode
icat datafile.img inode_num

ifind	 	Determine	which	inode	contains	a	specific	block
ifind datafile.img –d block_num

fls		 	Displays	deleted	file	entries	in	an	image
fls -rpd datafile.img

ffind		 	Find	the	filename	using	the	inode	
ffind datafile.img inode_num

Registry Parsing – Regripper
rip.pl –r <HIVEFILE> –f <HIVETYPE>

Useful Options:

-r Registry	hive	file	to	parse	<HIVEFILE>

-f Use <HIVETYPE> (e.g. sam, security, software, system, ntuser)

-l List all plugins

rip.pl –r /mnt/windows_mount/Windows/System32/config/SAM –f sam > /cases/
windowsforensics/SAM.txt

Recovering Data
Create Unallocated Image (deleted data) using blkls
blkls datafile.img > unallocated_imagefile.blkls

Create Slack Image Using dls (for FAT and NTFS)
blkls –s datafile.img > imagefile.slack

Foremost	Carves	out	files	based	on	headers	and	footers
data_file.img = raw data, slack space, memory, unallocated space
foremost –o outputdir –c /path/to/foremost.conf datafile.img

Sigfind - search for a binary value at a given offset (-o)
-o <offset> start search at byte <offset>
sigfind <hexvalue> -o <offset> datafile.img

Getting Started with REMnux
Below	are	some	of	the	malware	analysis	tasks	you	can	perform	on	REMnux.		For	the	
full listing of the many command-line tools available in this distro, see remnux.org.

Windows Memory Analysis – Dump Suspicious Processes
dlldump	 Extract	DLLs	from	specific	processes

 -p 	 Dump	DLLs	only	for	specific	PIDs

 -b Dump DLLs from process at base offset

 -r Dump DLLs matching REGEX name

 --dump-dir	 	Directory	to	save	extracted	files			
vol.py dlldump --dump-dir=./output –r metsrv

moddump - Extract kernel drivers

 -b Dump driver using base address (from modscan)

 -r Dump drivers matching REGEX name

 --dump-dir 	Directory	to	save	extracted	files
vol.py moddump --dump-dir=./
output –r gaopdx

procdump Dump process to executable sample

 -p 	 Dump	only	specific	PIDs

 -o Specify process by physical memory offset

 -n Use REGEX to specify process

 --dump-dir	 	Directory	to	save	extracted	files
vol.py procdump --dump-dir=./
output –p 868

memdump	 Dump	every	memory	section	into	a	single	file

 -p 	 Dump	memory	sections	from	these	PIDs

 -n Use REGEX to specify process

 --dump-dir	 	Directory	to	save	extracted	files
vol.py memdump –dump-dir=./output –p 868

dumpfiles	 Dump	File_Objects	from	file	cache

 -Q Extract using physical offset

 -r Extract using REGEX (-i for case insensitive)

 --dump-dir	 	Directory	to	save	extracted	files
vol.py dumpfiles –dump-dir=./output –r \\.exe

