
Ingraining security into the mind of every developer.

The SWAT Checklist provides an easy-to-reference set of best practices that raise
awareness and help development teams create more secure applications. It’s a
first step toward building a base of security knowledge around web application
security. Use this checklist to identify the minimum standard that is required to
neutralize vulnerabilities in your critical applications.

A U T H E N T I C A T I O N
BEST PRACTICE

Never allow credentials to be stored directly within the application code.
While it can be convenient to test application code with hardcoded
credentials during development, this significantly increases risk and should be avoided.
EXAMPLE: Hard-coded passwords in networking devices
https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf

CWE-798Don’t hardcode
credentials

DESCRIPTION CWE ID

Password reset systems are often the weakest link in an application. These
systems are often based on users answering personal questions to establish
their identity and in turn reset the password. The system needs to be based on questions
that are both hard to guess and brute force. Additionally, any password reset option
must not reveal whether or not an account is valid, preventing username harvesting.
EXAMPLE: Sara Palin password hack http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

CWE-640Develop a strong
password reset
system

Account lockout needs to be implemented to prevent brute-force attacks
against both the authentication and password reset functionality. After
several tries on a specific user account, the account should be locked for a period
of time or until it is manually unlocked. Additionally, it is best to continue the same
failure message indicating that the credentials are incorrect or the account is locked
to prevent an attacker from harvesting usernames.

CWE-307Implement account
lockout against
brute-force attacks

Messages for authentication errors must be clear and, at the same time, be written
so that sensitive information about the system is not disclosed. For example, error
messages that reveal that the user id is valid but that the corresponsing password
is incorrect confirm to an attacker that the account does exist on the system.

Don’t disclose too
much information
in error messages

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier (database).
Connecting to the database, of course, requires authentication. The authentication
credentials in the business logic tier must be stored in a centralized location that is
locked down. Scattering credentials throughout the source code is not acceptable. Some
development frameworks provide a centralized secure location for storing credentials
to the backend database. These encrypted stores should be leveraged when possible.

CWE-257Store database
credentials securely

If an application becomes compromised it is important that the application
itself and any middleware services be configured to run with minimal
privileges. For instance, while the application layer or business layer need
the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

CWE-250Applications and
middleware should
run with minimal
privileges

A password policy should be created and implemented so that passwords
meet specific strength criteria.
EXAMPLE: https://pages.nist.gov/800-63-3/sp800-63-3.html

CWE-521Implement a strong
password policy

Securing Web
Application

Technologies (SWAT)
C H E C K L I S T

Version 1.6

Secure DevOps
Practices

A N D

E R R O R H A N D L I N G A N D L O G G I N G
DESCRIPTIONBEST PRACTICE CWE ID

Given the languages and frameworks in use for web application
development, never allow an unhandled exception to occur. Error
handlers should be configured to handle unexpected errors and
gracefully return controlled output to the user.

No unhandled
exceptions

CWE-391

Log any authentication and session management activities along with
all input validation failures. Any security-related events should be
logged. These may be used to detect past or in-progress attacks.

Log all
authentication and
validation activities

CWE-778

Any activities or occasions where the user’s privilege level
changes should be logged.

Log all privilege
changes

CWE-778

Any administrative activities on the application or any of its
components should be logged.

Log administrative
activities

CWE-778

Any access to sensitive data should be logged. This is particularly
important for corporations that have to meet regulatory
requirements like HIPAA, PCI, or SOX.

Log access to
sensitive data

CWE-778

While logging errors and auditing access are important, sensitive
data should never be logged in an unencrypted form. For example,
under HIPAA and PCI, it would be a violation to log sensitive data into
the log itself unless the log is encrypted on the disk. Additionally, it
can create a serious exposure point should the web application itself
become compromised.

Do not log
inappropriate data

CWE-532

Logs should be stored and maintained appropriately to avoid
information loss or tampering by intruders. Log retention should
also follow the retention policy set forth by the organization to meet
regulatory requirements and provide enough information for forensic
and incident response activities.

Store logs securely CWE-533

Error messages should not reveal details about the internal state of
the application. For example, file system path and stack information
should not be exposed to the user through error messages.

CWE-209Display generic
error messages

Your development framework or platform may generate default error
messages. These should be suppressed or replaced with customized
error messages, as framework-generated messages may reveal
sensitive information to the user.

Suppress
framework-
generated errors

CWE-209

A C C E S S C O N T R O L

Use a Mandatory Access Control system. All access decisions will be
based on the principle of least privilege. If not explicitly allowed then
access should be denied. Additionally, after an account is created,
rights must be specifically added to that account to grant access to resources.

Apply the principle
of least privilege

CWE-272
CWE-250

Do not allow direct references to files or parameters that can be
manipulated to grant excessive access. Access control decisions
must be based on the authenticated user identity and trusted
server-side information.

Don’t use direct
object references
for access control
checks

CWE-284

An unvalidated forward can allow an attacker to access private
content without authentication. Unvalidated redirects allow an
attacker to lure victims into visiting malicious sites. Prevent this
from occurring by conducting the appropriate access control
checks before sending the user to the given location.

Don’t use
unvalidated
forwards or
redirects

CWE-601

DESCRIPTIONBEST PRACTICE CWE ID

Always apply the principle of complete mediation, forcing all requests
through a common security “gate keeper.” This ensures that access
control checks are triggered whether or not the user is authenticated.

CWE-284Apply access
control checks
consistently

S E S S I O N M A N A G E M E N T

Session tokens must be generated by secure random functions and
must be of sufficient length to withstand analysis and prediction.

CWE-6Ensure that session
identifiers are
sufficiently random

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

CWE-384Regenerate session
tokens

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application, effectively resetting the timeout counter automatically.

CWE-613Implement an idle
session timeout

Users should be logged out after an extensive amount of time (e.g., 4-8
hours) has passed since they logged in. This helps mitigate the risk of an
attacker using a hijacked session.

CWE-613Implement an
absolute session
timeout

Unless the application requires multiple simultaneous sessions for a single user,
implement features to detect session cloning attempts. Should any sign of session cloning
be detected, the session should be destroyed, forcing the real user to reauthenticate.

Destroy sessions
at any sign of
tampering

The session cookie should have the HttpOnly, Secure, and SameSite flags
set. This ensures that the session id will not be accessible to client-side
scripts, will only be transmitted over HTTPS, and will only be sent with
requests from the same site (mitigates CSRF).

CWE-79
CWE-614

Use secure cookie
attributes

When the user logs out of the application, the session and corresponding
data on the server must be destroyed. This ensures that the session cannot
be accidentially revived.

CWE-613Invalidate the
session after logout

The cookie domain and path scope should be set to the most restrictive
settings for your application. Any wildcard domain scoped cookie must have
a good justification for its existence.

Set the cookie
domain and path
correctly

The logout button or logout link should be easily accessible to users on
every page after they have authenticated.

Place a logout
button on every page

If a cookie has the “Max-Age” or “Expires” attributes the browser treats it as a
persistent cookie and stores it to disk until the expiration time. Do not do this
for session cookies.

Use non-persistent
cookies

BEST PRACTICE DESCRIPTION CWE ID

software-security.sans.org
APSPS_SEC540_v1.6_1-19

Securing Web Application Technologies (SWAT) C H E C K L I S T I N P U T A N D O U T P U T H A N D L I N G
DESCRIPTIONBEST PRACTICE CWE ID

For each user input field, there should be validation on the input
content. Whitelisting input is the preferred approach. Only accept
data that meet a certain criteria. For input that needs more flexibility,
blacklisting can also be applied where known bad input patterns or
characters are blocked.

Prefer whitelists
over blacklists

CWE-159
CWE-144

In order to prevent Cross-Site Request Forgery attacks, you must
embed a random value that is not known to third parties into the
HTML form. This CSRF protection token must be unique to each
request. This prevents a forged CSRF request from being submitted
because the attacker does not know the value of the token.

Use tokens to
prevent forged
requests

CWE-352

For every page in your application, set the encoding using HTTP
headers or meta tags within HTML. This ensures that the encoding of
the page is always defined and that the browser will not have to determine
the encoding on its own. Setting a consistent encoding like UTF-8 for your
application reduces the overall risk of issues like Cross-Site Scripting.

Set the encoding
for your application

CWE-172

Do not accept serialized objects from untrusted sources, define
known good data types when deserializing data, and implement
integrity checks on serialized objects.

Prevent Insecure
Deserialization

CWE-502

When hosting user uploaded content that can be viewed by other
users, use the X-Content-Type-Options: nosniff header so that
browsers do not try to guess the data type. Sometimes the browser can be
tricked into displaying the data type incorrectly (e.g., showing a GIF file as
HTML). Always let the server or application determine the data type.

Use the nosniff
header for
uploaded content

CWE-430

When accepting file uploads from the user make sure to validate
the size of the file, the file type, and the file contents, and ensure
that it is not possible to override the destination path for the file.

Validate uploaded
files

CWE-434
CWE-616
CWE-22

SQL queries should be crafted with user content passed into a bind
variable. Queries written this way are safe against SQL injection
attacks. SQL queries should not be created dynamically using
string concatenation. Similarly, the SQL query string used in a bound or
parameterized query should never be dynamically built from user input.
EXAMPLE: Sony SQL injection hack http://www.infosecurity-magazine.com/view/27930/
lulzsec-sony-pictures-hackers-were-school-chums

Use parameterized
SQL queries

CWE-89
CWE-564

Use the X-Frame-Options header or Content-Security-Policy (CSP)
header frame-ancestors directive to prevent content from being
loaded by a foreign site in a frame. This mitigates Clickjacking
attacks. For older browsers that do not support this header add
framebusting Javascript code to mitigate Clickjacking (although this
method is not foolproof and can be circumvented).

X-Frame-Options or
CSP headers

CAPEC-103
CWE-693

All output functions must contextually encode data before sending
the data to the user. Depending on where the output will end up in
the HTML page, the output must be encoded differently. For example,
data placed in the URL context must be encoded differently than data
placed in a JavaScript context within the HTML page.
EXAMPLE: Resource:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Conduct contextual
output encoding

CWE-79

The source of the input must be validated. For example, if input
is expected from a POST request, do not accept the input variable
from a GET request.

CWE-20
CWE-346

Validate the
source of input

Use the “rel” anchor tag attribute with values of “noopener” or
“noreferrer” to prevent an opened tab from tampering with the
calling tabs location in the browser. In JavaScript this can be
prevented by setting window.opener to null.

CWE-1022Prevent tabnabbing

The Content Security Policy (CSP), X-XSS-Protection, and Public-Key-
Pins headers help defend against Cross-Site Scripting (XSS) and Man-
in-the-Middle (MITM) attacks.
EXAMPLE: OWASP Secure Headers Project
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

Use secure HTTP
response headers

CWE-79
CWE-692

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.
EXAMPLE: DevOps Audit Defense Toolkit
https://itrevolution.com/devops-audit-defense-toolkit

CWE-439Establish a
rigorous change
management
process

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes are
made in a consistent, repeatable manner in all environments.

Automate
application
deployment

Integrating security into the design phase saves money and time. Conduct
a risk review with security professionals and threat model the application
to identify key risks. This helps you integrate appropriate countermeasures
into the design and architecture of the application.

CWE-701
CWE-656

Conduct a
design review

Security-focused code reviews can be one of the most effective ways to
find security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting. Leverage automated tools to
maximize breadth of coverage and consistency.

CWE-702Perform code
reviews

An incident handling plan should be drafted and tested on a regular basis.
The contact list of people to involve in a security incident related to the
application should be well defined and kept up to date.

Define an incident
handling plan

All components of infrastructure that support the application should be
configured according to security best practices and hardening guidelines.
In a typical web application this can include routers, firewalls, network
switches, operating systems, web servers, application servers, databases,
and application frameworks.

CWE-15
CWE-656

Harden the
infrastructure

Training helps define a common language that the team can use to improve
the security of the application. Education should not be confined solely to
software developers, testers, and architects. Anyone associated with the
development process, such as business analysts and project managers, should
all have periodic software security awareness training.

Educate the team
on security

Engage the business owner to define security requirements for the
application. This includes items that range from the whitelist validation
rules all the way to nonfunctional requirements like the performance of the
login function. Defining these requirements up front ensures that security is
baked into the system.

Define security
requirements

Conduct security testing both during and after development to ensure the
application meets security standards. Testing should also be conducted
after major releases to ensure vulnerabilities did not get introduced during
the update process. Leverage automation by including security tests into
the CI/CD pipeline.

Perform security
testing

C O N F I G U R A T I O N A N D O P E R A T I O N S
DESCRIPTIONBEST PRACTICE CWE ID

C W E I D

D A T A P R O T E C T I O N
DESCRIPTIONBEST PRACTICE

For all pages requiring protection by HTTPS, the same URL should not be
accessible via the insecure HTTP channel.

CWE-319Disable HTTP access
for all protected
resources

The Strict-Transport-Security header ensures that the browser does not
talk to the server over HTTP. This helps reduce the risk of HTTP downgrade
attacks as implemented by the sslsniff tool.

Use the Strict-
Transport-Security
header

Conduct an evaluation to ensure that sensitive data elements are
not being unnecessarily transported or stored. Where possible, use
tokenization to reduce data exposure risks.

Limit the use
and storage of
sensitive data

Encrypt sensitive or critical data before storage. CWE-311
CWE-312

Encrypt sensitive
data at rest

Browser data caching should be disabled using the cache control HTTP
headers or meta tags within the HTML page. Additionally, sensitive input
fields, such as the login form, should have the autocomplete attribute set to
off in the HTML form to instruct the browser not to cache the credentials.

CWE-524Disable data
caching using cache
control headers and
autocomplete

Ideally, HTTPS should be used for your entire application. If you have to limit
where it’s used, then HTTPS must be applied to any authentication pages as
well as to all pages after the user is authenticated. If sensitive information
(e.g., personal information) can be submitted before authentication, those
features must also be sent over HTTPS. Always link to the HTTPS version of
URL if available. Relying on redirection from HTTP to HTTPS increases the
opportunity for an attacker to insert a man-in-the-middle attack without
raising the user’s suspicion.
EXAMPLE: sslstrip

CWE-311
CWE-319
CWE-523

Use HTTPS
everywhere

User passwords must be stored using secure hashing techniques with
strong algorithms like PBKDF2, bcrypt, or SHA-512. Simply hashing the
password a single time does not sufficiently protect the password. Use
adaptive hashing (a work factor), combined with a randomly generated salt
for each user to make the hash strong.
EXAMPLE: https://haveibeenpwned.com

CWE-257Store user
passwords using
a strong, iterative,
salted hash

When keys are stored in your system they must be properly secured and
only accessible to the appropriate staff on a need-to-know basis.
EXAMPLE: AWS Key Management Service (KMS), Azure Key Vault, AWS CloudHSM

CWE-320Set up secure
key management
processes

HTTPS certificates should be signed by a reputable certificate authority.
The name on the certificate should match the FQDN of the website. The
certificate itself should be valid and not expired.
EXAMPLE: Let’s Encrypt https://letsencrypt.org

Use valid HTTPS
certificates from
a reputable
certificate authority

Use strong TLS
configurations

Weak ciphers must be disabled on all servers. For example, SSL v2, SSL
v3, and TLS protocols prior to 1.2 have known weaknesses and are not
considered secure. Additionally, disable the NULL, RC4, DES, and MD5
cipher suites. Ensure all key lengths are greater than 128 bits, use secure
renegotiation, and disable compression.
EXAMPLE: Qualys SSL Labs

CWE ID

If encryption keys are exchanged or pre-set in your application, then any
key establishment or exchange must be performed over a secure channel.

Securely exchange
encryption keys

P O S T E R

credentials during development, this significantly increases risk and should be avoided.
EXAMPLE: Hard-coded passwords in networking devices
https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf

Don’t hardcode
credentials

Password reset systems are often the weakest link in an application. These
systems are often based on users answering personal questions to establish
their identity and in turn reset the password. The system needs to be based on questions
that are both hard to guess and brute force. Additionally, any password reset option
must not reveal whether or not an account is valid, preventing username harvesting.

Sara Palin password hack http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

Develop a strong
password reset

Account lockout needs to be implemented to prevent brute-force attacks
against both the authentication and password reset functionality. After
several tries on a specific user account, the account should be locked for a period
of time or until it is manually unlocked. Additionally, it is best to continue the same
failure message indicating that the credentials are incorrect or the account is locked
to prevent an attacker from harvesting usernames.

Messages for authentication errors must be clear and, at the same time, be written
so that sensitive information about the system is not disclosed. For example, error
messages that reveal that the user id is valid but that the corresponsing password
is incorrect confirm to an attacker that the account does exist on the system.

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier (database).
Connecting to the database, of course, requires authentication. The authentication
credentials in the business logic tier must be stored in a centralized location that is
locked down. Scattering credentials throughout the source code is not acceptable. Some
development frameworks provide a centralized secure location for storing credentials
to the backend database. These encrypted stores should be leveraged when possible.

If an application becomes compromised it is important that the application
itself and any middleware services be configured to run with minimal
privileges. For instance, while the application layer or business layer need
the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

A password policy should be created and implemented so that passwords
meet specific strength criteria.

https://pages.nist.gov/800-63-3/sp800-63-3.html

S E S S I O N M A N A G E M E N T

Session tokens must be generated by secure random functions and
must be of sufficient length to withstand analysis and prediction.

CWE-6

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

CWE-384

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application, effectively resetting the timeout counter automatically.

CWE-613

Users should be logged out after an extensive amount of time (e.g., 4-8
hours) has passed since they logged in. This helps mitigate the risk of an

Unless the application requires multiple simultaneous sessions for a single user,
implement features to detect session cloning attempts. Should any sign of session cloning
be detected, the session should be destroyed, forcing the real user to reauthenticate.

The session cookie should have the HttpOnly, Secure, and SameSite flags
set. This ensures that the session id will not be accessible to client-side
scripts, will only be transmitted over HTTPS, and will only be sent with

When the user logs out of the application, the session and corresponding
data on the server must be destroyed. This ensures that the session cannot

The cookie domain and path scope should be set to the most restrictive
settings for your application. Any wildcard domain scoped cookie must have

The logout button or logout link should be easily accessible to users on

If a cookie has the “Max-Age” or “Expires” attributes the browser treats it as a
persistent cookie and stores it to disk until the expiration time. Do not do this
for session cookies.

For all pages requiring protection by HTTPS, the same URL should not be
accessible via the insecure HTTP channel.

The Strict-Transport-Security header ensures that the browser does not
talk to the server over HTTP. This helps reduce the risk of HTTP downgrade
attacks as implemented by the sslsniff tool.

Use the Strict-
Transport-Security

Ideally, HTTPS should be used for your entire application. If you have to limit
where it’s used, then HTTPS must be applied to any authentication pages as
well as to all pages after the user is authenticated. If sensitive information
(e.g., personal information) can be submitted before authentication, those
features must also be sent over HTTPS. Always link to the HTTPS version of
URL if available. Relying on redirection from HTTP to HTTPS increases the
opportunity for an attacker to insert a man-in-the-middle attack without
raising the user’s suspicion.

CWE-311
CWE-319
CWE-523

Store user
passwords using
a strong, iterative,
salted hash

Weak ciphers must be disabled on all servers. For example, SSL v2, SSL
v3, and TLS protocols prior to 1.2 have known weaknesses and are not
considered secure. Additionally, disable the NULL, RC4, DES, and MD5
cipher suites. Ensure all key lengths are greater than 128 bits, use secure
renegotiation, and disable compression.
EXAMPLE:

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

DevOps Audit Defense Toolkit
https://itrevolution.com/devops-audit-defense-toolkit

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes are
made in a consistent, repeatable manner in all environments.

Integrating security into the design phase saves money and time. Conduct
a risk review with security professionals and threat model the application
to identify key risks. This helps you integrate appropriate countermeasures
into the design and architecture of the application.

Security-focused code reviews can be one of the most effective ways to
find security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting. Leverage automated tools to

Engage the business owner to define security requirements for the
application. This includes items that range from the whitelist validation
rules all the way to nonfunctional requirements like the performance of the
login function. Defining these requirements up front ensures that security is
baked into the system.

C O N F I G U R A T I O N A N D O P E R A T I O N S
DESCRIPTION

not being unnecessarily transported or stored. Where possible, use
tokenization to reduce data exposure risks.

and storage of

Encrypt sensitive
data at rest

Disable data
caching using cache
control headers and
autocomplete

Set up secure
key management
processes

Use valid HTTPS
certificates from
a reputable
certificate authority

Securely exchange
encryption keys

S E C U R E D E V O P S A N D C L O U D

SEC534
Secure DevOps:

A Practical Introduction

SEC524
Cloud Security and
Risk Fundamentals

SEC540
Cloud and DevOps

Security Automation

SEC545
Cloud Security Architecture

and Operations

A W A R E N E S S & T E S T I N G

SEC542
Web App Penetration Testing

and Ethical Hacking
GWAPT

SEC642
Advanced Web App Penetration

Testing, Ethical Hacking, and
Exploitation Techniques

AppSec CyberTalent
Assessment

sans.org/appsec-assessment

SSA.DEVELOPER
Application Security Awareness

Modules

DEV522
Defending Web Applications

Security Essentials
GWEB

A P P L I C A T I O N S E C U R I T Y

DEV531
Defending Mobile Applications

Security Essentials

DEV541
Secure Coding in Java/JEE

GSSP-JAVA

DEV544
Secure Coding in .NET

GSSP-NET

Twitter
@sansappsec
Latest news, promos, and other
information

Twitter

Website
software-security.sans.org
Free resources, white papers, webcasts,
and more

Blog
software-security.sans.org/blog
Blog

C U R R I C U L U M

Learn to build, deliver, and deploy modern applications using
secure DevOps and cloud principles, practices, and tools.

SEC540: Cloud and DevOps Security Automation

www.sans.org/SEC540

Secure DevOps ToolchainCloud Security Top Ten
Pre-Commit
Security activities before code is checked in to version control

Threat Modeling/Attack
Mapping:
 Attacker personas
 Evil user stories
 Raindance
 Mozilla Rapid Risk Assessment
 OWASP ThreatDragon
 SAFECode Tactical Threat
Modeling

 Slack goSDL
 ThreatPlaybook

Security and Privacy
Stories:
 OWASP ASVS
 SAFECode Security Stories

Pre-Commit Security
Hooks:
 git-hound
 git-secrets
 Repo-supervisor
 ThoughtWorks Talisman

IDE Security Plugins:
 DevSkim
 FindSecurityBugs
 Puma Scan
 SonarLint

Manual and Peer Reviews:
 Gerrit
 GitHub pull request
 GitLab merge request
 Review Board

Secure Coding Standards:
 CERT Secure Coding Standards
 OWASP Proactive Controls
 SAFECode Fundamental
Practices for Secure Software
Development

Commit (Continuous Integration)
Fast, automated security checks during the build and Continuous Integration steps

Static Code Analysis
(SCA):
 Brakeman
 ESLint
 FindSecurityBugs
 NodeJsScan
 Phan

Security Unit Tests:
 JUnit
 Mocha
 xUnit

Infrastructure as Code
Analysis:
 ansible-lint
 cfn_nag
 cookstyle
 Foodcritic
 puppet-lint

Container Hardening:
 Bane
 CIS Benchmarks
 grsecurity

Dependency
Management:
 Bundler-Audit
 Github security alerts
 Node Security Platform
 PHP Security Checker
 Retire.JS
 OWASP Dependency Check
 Terrascan

Container Security:
 Actuary
 Anchore
 Clair
 Dagda
 Docker Bench
 kube-bench
 kube-hunter
 Falco

Acceptance (Continuous Delivery)
Automated security acceptance, functional testing, and deep out-of-band scanning during
Continuous Delivery

Infrastructure as Code:
 Ansible
 Chef
 Puppet
 SaltStack
 Terraform
 Vagrant

Immutable Infrastructure:
 Docker
 rkt

Security Scanning:
 Arachni
 nmap
 sqlmap
 ssh_scan
 sslyze
 ZAP

Cloud Configuration
Management:
 AWS CloudFormation
 Azure Resource Manager
 Google Cloud Deployment
Manager

Security Acceptance
Testing:
 BDD-Security
 Gauntlt
 Mittn

Infrastructure Tests:
 CIS
 Serverspec
 Test Kitchen

Infrastructure Compliance
Checks:
 HubbleStack
 InSpec

Operations
Continuous security monitoring, testing, audit, and compliance checks

Fault Injection:
 Chaos Kong
 Chaos Monkey
 Infection Monkey
 pumba

Cyber Simulations:
 Game day exercises
 Tabletop scenarios

Continuous Scanning:
 Netflix Aardvark
 OpenSCAP
 OpenVAS
 Prowler
 Scout2
 vuls

Penetration Testing:
 Attack-driven defense
 Bug Bounties
 Red team exercises

Threat Intelligence:
 Diamond Model
 Kill Chain
 STIX
 TAXII

Cloud Compliance:
 Cloud Custodian
 Forseti Security
 Netflix Repokid
 CIS AWS Benchmark
 CIS Azure Benchmark

Blameless Postmortems:
 Etsy Morgue

Continuous Monitoring:
 ElastAlert
 grafana
 graphite
 prometheus
 seyren
 sof-elk
 statsd
 411

Cloud Monitoring:
 CloudWatch
 CloudTrail
 Reddalert
 Azure Security Center

Production (Continuous Deployment)
Security checks before, during, and after code is deployed to production

Security Smoke Tests:
 ZAP Baseline Scan
 nmap
 ssllabs-scan

Cloud Secrets
Management:
 AWS KMS
 AWS Secrets Manager
 Azure Key Vault
 Google Cloud KMS

Configuration Safety
Checks:
 AWS Config
 AWS Trusted Advisor
 Microsoft Azure Advisor
 Security Monkey
 OSQuery

Cloud Security Testing:
 CloudSploit
 Nimbostratus

Secrets Management:
 Ansible Vault
 Blackbox
 Chef Vault
 CyberArk Conjur
 Docker Secrets
 Hashicorp Vault
 Pinterest Knox

Serverless Protection:
 FunctionShield

Server Hardening:
 CIS
 dev-sec.io
 SIMP

Host Intrusion Detection
System (HIDS):
 fail2ban
 OSSEC
 Samhain
 Wazuh

Secure
DevOps
Practices

1 Insecure use of Developer Credentials
Developer credentials allow your team and
integrations access to your account. They should
be stored and used securely to ensure that
only authorized individuals and use-cases have
access. When possible considering tracking and
auto-expiring credentials after a set period of
time or inactivity.

2 Publicly Accessible Storage
Cloud providers have several different methods
of storing objects and data. Regularly review your
configurations to ensure that only the intended
components are publicly accessible.

3 Improper use of Default Configurations
Cloud providers pre-configure common access
control policies. These can be convenient,
but often introduce risk as provider’s service
offerings change. Pre-configured rules often
change to introduce access to new services
outside the context of what is actually needed or
being used.

4 Broken Access Control
Principles of least privilege should be followed
when architecting access to cloud services.
Consider the granularity of access to services,
systems, and the network. Regularly or
automatically review this access to ensure that
least privilege is being followed.

5 Misconfigured Network Constructs
Most cloud providers have sophisticated
methods to control network access beyond
simple IP address based rules. Consider using
these constructs for controlling access at a
granular level. Consider using cloud provider
based network components to segment traffic
thoughtfully.

6 Inadequate Monitoring and Logging
Turn on and regularly monitor API access logging.
Consider a risk based logging strategy for
services which are not logged by way of these
core logging services.

7 Lack of Inventory Management
API based access solves a lot of inventory
management problems. Consider strategies to
enrich your environment with additional information
around ownership, use-case, and sensitivity.

8 Domain Hijacking
Transitive-trust often exists between cloud
services and DNS entries. Regularly review your
DNS and cloud configurations to prevent take-
over situations.

9 Lack of a Disaster Recovery Plan
Cloud environments do not automatically solve
DR concerns. Consider what level of investment is
appropriate for catastrophic events within your
cloud environment. Design a DR program to recover
from outside accounts, providers, or locales.

10 Manual Account Configuration
Doing things by hand limits your ability to scale and
leverage cloud-native security tools and controls.
Consider “security-as-code” and automation as your
best friends within cloud environments.

Building a DevSecOps Program (CALMS)
 Culture

Break down barriers between Development, Security, and
Operations through education and outreach

 Automation
Embed self-service automated security scanning and testing in
continuous delivery

 Lean
Value stream analysis on security and compliance processes to
optimize flow

 Measurement
Use metrics to shape design and drive decisions

 Sharing
Share threats, risks, and vulnerabilities by adding them to
engineering backlogs

Start Your DevOps Metrics Program
 Number of high-severity vulnerabilities and how long they are open

 Build and deployment cycle time

 Automated test frequency and coverage

 Scanning frequency and coverage

 Number of attacks (and attackers) hitting your application

First Steps in Automation
 Build a security smoke test (e.g., ZAP Baseline Scan)

 Conduct negative unit testing to get off of the happy path

 Attack your system before somebody else does (e.g., Gauntlt)

 Add hardening steps into configuration recipes (e.g., dev-sec.io)

 Harden and test your CI/CD pipelines and do not rely on
developer-friendly defaults

Poster contributors:
 Ben Allen
 Will Bengston
 Jim Bird
 David Deatherage
 Mark Geeslin
 Ben Hagen
 Mark Hillick
 Eric Johnson
 Frank Kim
 Jason Lam
 Gregory Leonard
 Ory Segal and PureSec
 Dr. Johannes Ullrich
 Thomas Vachon
 Steve Woodrow

Contributors: Ben Hagen Mark Hillick Will Bengston Steve Woodrow Thomas Vachon

Serverless Security Top Ten
1 Function Event Data Injection
Serverless architectures provide a multitude of
event sources, which can trigger the execution
of a serverless function. These functions can
consume input from each type of event source,
and such event input might include different
message formats, depending on the type of event
and its source. The various parts of these event
messages can contain attacker-controlled or
otherwise dangerous inputs.

2 Broken Authentication
Serverless architectures promote a microservices-
oriented system design and are composed
of functions that are weaved together and
orchestrated to form the overall system
logic. Some serverless functions may expose
public web APIs, while others may consume
events of different source types, such as cloud
storage events, NoSQL database events, IoT
device telemetry signals or even SMS message
notifications. Apply robust authentication
schemes, which provide access control and
protection, to all relevant functions, event types
and triggers.

3 Insecure Serverless Deployment
Configuration

Cloud services in general, and serverless
architectures in particular offer many
customizations and configuration settings in
order to adapt them for each specific need, task
or surrounding environment. Some of these
configuration settings have critical implications
on the overall security posture of the application
and should be given attention. Do not rely on
the default settings provided by serverless
architecture vendors.

4 Over-Privileged Function Permissions
and Roles

Serverless applications should always follow
the principle of “ least privilege” . This means
that a serverless function should be given only
those privileges, which are essential in order to
perform its intended logic. In a system where all
functions share the same set of over-privileged
permissions, a vulnerability in a single function
can eventually escalate into a system-wide
security catastrophe.

5 Inadequate Function Monitoring and
Logging

Augment basic or out-of-the-box logging
configurations to provide a full security event
audit trail. This should includes items such as
successful/failed API access key use, attempts
to invoke serverless functions with inadequate
permissions, successful/failed deployment of new
serverless functions or configurations, changes
to function permissions or execution roles,
anomalous interaction or irregular flow between
serverless functions, outbound connections
initiated by serverless functions, and execution
of serverless functions or access to data from an
external third-party account not related to the
main account.

6 Insecure Third-Party Dependencies
Define a process for maintaining an inventory list
of software packages and other dependencies
and their versions, scanning software for known
vulnerable dependencies, removing unnecessary
dependencies, and upgrading deprecated package
versions to the latest versions and applying all
relevant software patches.

7 Insecure Application Secrets Storage
Store all application secrets in secure encrypted
storage and ensure that encryption keys
are maintained via a centralized encryption
key management infrastructure or service.
Such services are offered by most serverless
architecture and cloud vendors, who also
provide developers with secure APIs that can
easily and seamlessly integrate into serverless
environments.

8 Denial of Service and Financial
Resource Exhaustion

Serverless architecture vendors define default
limits on the execution of serverless functions.
Depending on the type of limit and activity, poorly
designed or configured applications may be
abused in such a way that will eventually cause
latency to become unacceptable or even render it
unusable for other users. Additionally, an attacker
may push the serverless application to “over-
execute” for long periods of time, essentially
inflating the monthly bill and inflicting a financial
loss for the target organization.

9 Serverless Function Execution
Flow Manipulation

Manipulation of application flow may help
attackers to subvert application logic. Using
this technique, an attacker may sometimes
bypass access controls, elevate user
privileges or even mount a Denial of Service
attack. In a system where multiple functions
exist, and each function may invoke another
function, the order of invocation might
be critical for achieving the desired logic.
Moreover, the design might assume that
certain functions are only invoked under
specific scenarios and only by authorized
invokers. Make sure that proper access
controls and permissions are set for each
function, and where applicable, use a robust
application state management facility.

10 Improper Exception Handling
and Verbose Error Messages

Options for performing line-by-line
debugging of serverless based applications
is rather limited and more complex
compared to the debugging capabilities
that are available when developing
standard applications. This forces some
developers to adopt the use of verbose
error messages, enable debugging
environment variables and eventually
forget to clean the code when moving it
to the production environment. Verbose
error messages such as stack traces or
syntax errors, which are exposed to end
users, may reveal details about the internal
logic of the serverless function, and in
turn reveal potential weaknesses, flaws or
even leak sensitive data. If your serverless
environment supports defining custom
error responses, such as those provided
by API gateways, create simple error
messages that do not reveal any details
about the internal implementation or any
environment variables.

Contributed by Ory Segal and PureSec
https://www.puresec.io/blog/serverless-top-10-released

S E C U R E D E V O P S A N D C L O U D

SEC534
Secure DevOps:

A Practical Introduction

SEC524
Cloud Security and
Risk Fundamentals

SEC540
Cloud and DevOps

Security Automation

SEC545
Cloud Security Architecture

and Operations

A W A R E N E S S & T E S T I N G

SEC542
Web App Penetration Testing

and Ethical Hacking
GWAPT

SEC642
Advanced Web App Penetration

Testing, Ethical Hacking, and
Exploitation Techniques

AppSec CyberTalent
Assessment

sans.org/appsec-assessment

SSA.DEVELOPER
Application Security Awareness

Modules

DEV522
Defending Web Applications

Security Essentials
GWEB

A P P L I C A T I O N S E C U R I T Y

DEV531
Defending Mobile Applications

Security Essentials

DEV541
Secure Coding in Java/JEE

GSSP-JAVA

DEV544
Secure Coding in .NET

GSSP-NET

Twitter
@sansappsec
Latest news, promos, and other
information

Twitter

Website
software-security.sans.org
Free resources, white papers, webcasts,
and more

Blog
software-security.sans.org/blog
Blog

C U R R I C U L U M

