
What the DLL is
happening?

A practical approach to
identifying SOH.

▪ Detection Engineering training lead within the

Red Canary CIRT

▪ Ran the Security Operations team at a national

financial services provider for several years

▪ Recently got a Mavic Mini drone, and I swear it’s

been windy ever since...Frank McClain
Senior Detection Engineer

RED CANARY

@littlemac042

Presenter

▪ A means by which DLLs are found and loaded into process memory

▪ Multiple factors or variables exist, but basically follows this order

○ DLL of the same name already loaded in memory (by another process)

○ DLL is listed in the ‘KnownDLLs’ registry key

○ DLL of the same name exists in the same directory as the loading process

○ System directory (e.g., ‘%SystemRoot%\System32’)

What is Dynamic Link Library (DLL)
search order?

▪ Form of DLL hijacking (on Windows)

▪ Commonly used by adversaries (commodity and advanced)

▪ Primarily leverages the same directory as the loading process

What is search order hijacking
(SOH)?

Why is SOH important?

▪ Common adversary technique

▪ Persistence mechanism

▪ Privilege escalation

▪ Bypass security controls

Why is SOH important?

SEARCH ORDER HIJACKING

▪ Identification or detection methods

▪ Detector concepts (ideas to try)

▪ Detection examples (SOH in action)

▪ Mitigation strategies

Covering SOH

▪ Creation of a scheduled task in a suspect path (user path, ProgramData, etc.)

▪ Script processes (wscript.exe, cscript.exe, etc.) spawning an unsigned binary

▪ Service Host (svchost.exe) spawned by a suspect parent process

▪ Legitimate system binaries copied to/executing from suspect paths

▪ Unsigned, unknown DLLs written to/loaded from suspect paths

▪ And more...

Identification methods

▪ Check to see if binaries are legitimate, signed, or operating system

▪ Identify if any DLL files are written to the same (suspect) path

▪ Check DLLs to see if they are legit, or have the same name as legit DLLs

▪ If the binary was executed from the suspect path, see whether it loaded DLLs

from that path

Post-identification validation

SEARCH ORDER HIJACKING

Detector
concepts

▪ Process_Is ‘schtasks.exe’ AND Command_Line_Contains

‘appdata\roaming’ AND Command_Line_Contains ‘*.exe’

▪ Parent_Process_Is ‘taskeng.exe’ OR Parent_Process_Is

‘svchost.exe’ AND Binary_Publisher_Is ‘Microsoft Windows’ AND

Process_Path_Is ‘appdata\roaming’

▪ Binary_Publisher_Is ‘Microsoft Windows’ AND Process_Path_Is_Not

‘windows\system32’ OR Process_Path_Is_Not ‘windows\syswow64’ OR

Process_Path_Is_Not ‘windows\winsxs’

Sample query logic (getting started)

SEARCH ORDER HIJACKING

Detection
examples

SCHEDULED TASK

Setting up to

execute a binary

within the user

profile. This

legit binary is

part of

BitLocker.

DETECTION #1

Here is where the binary is written to disk

under the profile. It is expected to reside

in System32.

FILE COPY

DETECTION #1

Here is where the malicious DLL is written to disk in the

same path under the user profile; when the EXE is

launched, this DLL will be loaded into memory.

FILE COPY

DETECTION #1

Malicious binary written to disk, leveraging metadata

(or perhaps a compromised binary) to masquerade as

GNU DiffUtils.

DETECTION #2

MASQUERADING

Legitimate system binary written to disk under the

user profile; SOH, here we come!

DETECTION #2

FILE COPY

Here is where the malicious DLL is written to disk in the

same path under the user profile; when the EXE is

launched, this DLL will be loaded into memory.

DETECTION #2

FILE COPY

DETECTION #2

SCHEDULED TASK

Setting up to execute a binary within the user profile.

This is the legitimate Windows Fax & Scan binary.

Execution of the legitimate Windows Fax & Scan

binary, from within the user path (1 hour after the

scheduled task creation).

DETECTION #2

EXECUTION

And now the malicious DLL gets loaded into memory by

the legitimate WFS process. Whatever code it contains is

now active and being used by wfs.exe.

DETECTION #2

SOH!

▪ If you’re compiling binaries, make all DLLs explicit, including fully qualified path

▪ Maintain security hygiene and an active patching program

▪ Leverage Microsoft provisions

○ SafeDLLSearchMode

○ CWDIllegalInDllSearch

▪ Good detection methodologies

Can you prevent or mitigate the
risk of SOH?

▪ Red Canary on MITRE ATT&CK®

○ https://redcanary.com/mitre-attack/

▪ Red Canary (2020 Threat Detection Report)

○ https://redcanary.com/threat-detection-report/techniques/dll-search-order-hijacking/

▪ MITRE ATT&CK - Hijack Execution Flow: DLL Search Order Hijacking

○ https://attack.mitre.org/techniques/T1574/001/

▪ Microsoft on Dynamic-Link Library Search Order

○ https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

Reference links

https://redcanary.com/mitre-attack/
https://redcanary.com/threat-detection-report/techniques/dll-search-order-hijacking/
https://attack.mitre.org/techniques/T1574/001/
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

FEEDBACK

Q & A

