
Long Live Linux Forensics!

The Linux Forensics Team

$ whoami

Ali Hadi

Professor @ Champlain

College

{Computer and Digital

Forensics, Cybersecurity}

@binaryz0ne

2

$ whoami

Brendan Brown

Alum @ Champlain College

{CDF & Cybersecurity}

Reverse Engineer - InvictusIC

@br_endian

$ whoami

Victor Griswold

Senior @ Champlain College

{Digital Forensics and

Cybersecurity}

@vicgriswold

Scenario(s)

- Learning Linux Forensics Through Case Studies -

#1
Linux User Artifacts
(GNOME/XFCE)

3

#2
Compromised Web
Server...

#3
More Hidden
Processes...

Case #1: Linux User Artifacts...

✘ Looking at some test cases for the following User Activity artifacts:
○ Thumbnails
○ Trash
○ Recently Used Documents

✘ Performed on Ubuntu 18.04.1 LTS (GNOME) and Kali 2020.1b (Xfce4)
✘ Comparing results between the two test environments
✘ Comparing Freedesktop (XDG) Standards to findings

4

Thumbnails

What we Expect...

✘ Thumbnails will appear in ~/.cache/thumbnails/[normal | large | fail]
✘ Thumbnails will be in PNG format
✘ Thumbnails will contain at least the Thumb::URI and Thumb::MTime

PNG tEXt keys
✘ Thumbnails file name will be the MD5 hash of the URI found in

Thumb::URI with .png appended

5

Xfce4 Thumbnails

6
Test dir = ~/home/Desktop/Cats/

11 Images

Only 3 thumbnailed
exiftool -S -ThumbURI -ThumbMTime . | grep -C1 [dir_name]

GNOME Thumbnails

7
Test dir = ~/home/Desktop/Cats/

Same 11 Images

All 11 thumbnailed!

GNOME v. Xfce4 Thumbnail Tags

8

GNOME + Xfce4 Thumbnail Timestamps

9

sudo debugfs -R 'stat [<inode_num>]' /dev/...

Last Viewed

First Viewed

Trash Folder

What we Expect...

✘ Expect to find a folder called ‘Trash’ in each user’s ~/.local/share
✘ Expect to find at least 2 directories in “Trash”: files and info

○ ‘files’ directory will contain all the files and directories that have
been moved to trash

○ ‘info’ directory will contain *.trashinfo files related to files in ‘files’
directory

Note: Files only moved to trash through GUI interaction (not through ‘rm’
commands)

10

GNOME and Xfce4 Trash Folders

11

GNOME and Xfce4 Trash Folders (cont.)

12

Trash directory is created
when first file is trashed

“expunged” directory is
created and timestamps
update on trash empty

Trash Folders Timestamps

13

Before Trashed

.trashinfo

Trashed files try to maintain the
original files atime and mtime.
Files ctime will indicate when it was
deleted and should match the
corresponding .trashinfo files
crtime.

Recently Used

What we Expect...

✘ An XML file with similar format
to this

✘ Found in ~/.recently-used

This is not exactly what we find...

14

<?xml version="1.0"?>
<RecentFiles>

<RecentItem>

<URI>file:///home/jwillcox/testfile.txt</URI>
<Mime-Type>text/plain</Mime-Type>
<Timestamp>1028181153</Timestamp>
<Private/>
<Groups>

<Group>Recent File Test</Group>
</Groups>

</RecentItem>
</RecentFiles>

Example from freedesktop standards:

What we find recently used GNOME

15

File found in: ~/.local/share/recently-used.xbel

What we find recently used Xfce4

16

File found in: ~/.local/share/recently-used.xbel

Recently Used Breakdown

17

#2: Compromised Web Server...

✘ You might be wondering that you’ve already seen this case
before?
○ Web Server Environment (Apache)
○ Unusual network activity was noticed

✘ Previous cases our team showed how to track down a threat
actor using different system artifacts, especially logs!

✘ Today we are dealing with a different scenario!

18

Case Constraints!!!

✘ No Web Server Logs...
✘ Dealing with Hidden Processes...
✘ You can’t acquire system memory...
✘ You can’t do memory forensics...

✘ This is where this talk comes in...

19

Apache Backdoor Module!!!

✘ But does that mean there is no one using Apache2?

[1] RGDoor found by Unit42 at Palo Alto Networks
[2] Apache Backdoor found by Welivesecurity at ESET
[3] Backdoors in XAMP by Juan Fernandez at Tarlogic
[4] Apache PoC Module by Vlad Rico @RicoVlad

20

✘ Sending reverse shell using the malicious Apache2 module

✘ Threat actor now has root access...

How it Works!!!

21

Normal Network Connections??!!

✘ Start by checking the network services...
✘ Everything looks normal here; right?

22

✘ Think again; check the “avahi-daemon”

✘ Why is avahi*:
○ Not bound to UDP port 5353?
○ Communicating with TCP port 443?!

23

Normal Network Connections??!!

Wait / What... BASH not Avahi*??!!

✘ Listing Open TCP connections using lsof…

Findings: PID = 2106 | user = root | FD = 0,1,2,12 | Device =
32914

Protocol = TCP | Dest. IP Address = 192.168.210.132
24

Checking Open Files!!!

✘ UNIX Domain Socket used for process communication...
✘ STREAM 32194 and 32273

25

✘ PPID? !!

26

✘ Process = Systemd
✘ User = root

✘ Let’s check the FDs,
sockets, and pipes used...

Process Context??!!

✘ We can see the socket (s) file in /tmp

FDs, Sockets, and Pipes!!!

✘ Process file descriptors and how they are mapped to the sockets
and pipes

✘ We can map them with what we’ve previously seen...

27

28

✘ We have two Apache2
instances; why?!

✘ We can also see the running
Bash

Apache Instances!!!

CGroups & Loaded Modules!!!

29

✘ CGROUPS for the Apache2 unit…

✘ Checking the loaded apache modules…
we can see the authz_net string!

○ Turned out to be a module!

Apache2 Instance!!!

✘ PPID = 2034
✘ This is the apache2 instance

with the number of threads…
✘ Suspicious module also

loaded here

30

Unix Socket Streams!!!

✘ PPID = 2103
✘ The weird module

/tmp/mod_authz_net
we’ve seen before!

✘ This is the malicious
Apache2 instance which is
channeled with the
reverse shell using bash...

31

Static Checks!!!

✘ If we check the strings and/or the
imported symbols, we can see some
interesting features related to
network, system, and process activity

✘ We can also see features related to
the backdoor itself...

Note: output is filtered

32

Network
Functions

Backdoor
functions

System
Functions

Process
Functions

Shout(s)-Out!!!...

✘ Thanks to all those out there that keep reminding the community
of not to KILL a process, but dump it from memory first, especially if
it does not exist on disk anymore!

✘ Craig H. Rowland, @CraigHRowland
○ https://twitter.com/CraigHRowland/status/1177373397463863296

33

https://twitter.com/CraigHRowland/status/1177373397463863296

Anonymous Processes

34

- They exist...

- Process spawned from chunk of memory

- Never on filesystem -> no FS artifacts

- Creating & writing directly to FD

NC reverse shell

- Leveraging memfd_create()

- Non-native ELF pushed in
remotely and written to mem

What we’re examining

Process Behavior

36

Fork -> Execute -> Die

- Why do we care?

- Parent data in /procfs

- Children? Commands?

Monitoring

37

Execsnoop - leverages ftrace to record exec() calls

Pkg: perf-tools-unstable

Forkstat - records the following events:

Pkg: forkstat

IR Toolkit !∞= forensically sound
*Tsurugi - DFIR Linux

https://tsurugi-linux.org/

Monitoring - execsnoop

38

Shell creation:

- Sshd called
- Motd
- Patch state
- Update check
- Mounting FS

execsnoop-perf -a 16 -r > proclog.txt

Process executions:

Monitoring - forkstat

39

forkstat -e all -x -S > forklog.txt
How is forkstat

different?

- Datapoints:
1 vs. 12

- No exec()?
- Process Ancestry
- Procmon

Monitoring

- Forkstat -

40

- UID info

- ssh without pseudo
terminal

- Verbose binary
(command) calls

- Witness the
fork > execute > exit cycle

Session ID

41

Consistent session ID

Parent
->

Child

Environ + Others

42

Most Relevant Procfs artifacts:

/proc/$$/environ
/proc/$$/cmdline
/proc/$$/task/$$/children
/proc/$$/status
/proc/$$/io

- Process data transfer

- Arguments passed to process

- Parent-child relationship & proc
name

Environ + Others

43

Most Relevant Procfs artifacts:

/proc/$$/environ
/proc/$$/cmdline
/proc/$$/task/$$/children
/proc/$$/status
/proc/$$/io

(/bin/dash)
- SSH host / client address + ports
- Language
- Session ID
- User
- UID
- PWD
- Homedir
- Shell
- Underscore variable *

(binary / script last executed as arguments)

44

Summation

- How to find data from process with no FS attribution

- How processes behave in memory

- Why they can be hard to track normally

- Tools to help you follow the chain of execution

- Artifacts in procfs found to be most relevant

thanks!

Any questions?

You can find us
@binaryz0ne | @br_endian | @vicgriswold

45

Credits & References...

Special thanks to all the people who made and released these awesome
resources for free:

✘ Presentation template by SlidesCarnival and Photographs by Unsplash
✘ Credits to Vlad Rico @RicoVlad for the Malicious Apache2 Module

○ Module here: https://github.com/VladRico/apache2_BackdoorMod
✘ Craig Rowland @CraigHRowland, for his awesome Linux Forensics work.
✘ Stuart @MagisterQuis, for his write ups on anonymous processes
✘ Lynx for their process forking image.
✘ Sorry if we missed someone!

46

http://www.slidescarnival.com/
http://unsplash.com/
https://twitter.com/RicoVlad
https://twitter.com/CraigHRowland
https://twitter.com/magisterquis

