
Linux Forensics

Binary analysis – Part2

Executable and Linkable Format 
Approach



WHOAMI

❑Team Lead, Cyber Threat Defense Centre@ Dotin

❑Main focus on hunting badness

Seyyed Hossein Kamali



Executable and Linkable 

Format



Why Learning ELF Files?

❖ Blue Teamers

❖ Incident Response

❖ Digital Forensics

❖ Malware Researchers

❖ Red Teamers

Why should we know about ELF files?

ELF file analysis used by:



Definition

ELF (Executable and Linkable Format ) formerly named Extensible Linking Format 

standard file format for executable files, object code, shared libraries, and core 

dumps. First introduced with Unix system and is now standard executable file format 

on Linux, FreeBSD and any other device like micro controller and many other thinks. 

By design, the ELF format is flexible, extensible, and cross-platform. For instance it 

supports different endiannesses and address sizes so it does not exclude any 

particular central processing unit (CPU) or instruction set architecture.(7)



ELF known file extensions

.axf .bin .elf .o .prx .puff .ko .mod .so

ELF Extension



Anatomy of an Executable File



Each operating systems have two 

fundamental abstractions

FilesProcesses

Binary or executable files can be 

viewed as static representation of 

resources

processes can be viewed as 

a dynamic representation of 

resources.



Definition

The process of transforming the static 
object (binary executable files) in a 
dynamic object (process) is called 

loading.



Linker and Loader

Linker: Linking is the process of combining various pieces of code and data 
together to form a single executable that can be loaded in memory. Linking can be 
done at compile time, at load time (by loaders) and also at run time (by application 
programs).

Loader: The loader is a program called execve, which loads the code and data of 
the executable object file into memory and then runs the program by jumping to 
the first instruction.(3)

 in real environments, with dynamic linking, loading may require relocation. Why? 

▪ Because, if the file is dynamically linked it has to be linked again with all the 
shared libraries it depends on.

In the next part, I’ll describe the full relocation and symbol 

resolution structure.

ELF files are used by 

two tools



Linker and Loader

• Program Loading: This refers to copying a program image from hard disk to the main 

memory in order to put the program in a ready-to-run state. In some cases, program loading 

also might involve allocating storage space or mapping virtual addresses to disk pages.

• Relocation: Compilers and assemblers generate the object code for each input module with a 

starting address of zero. Relocation is the process of assigning load addresses to different parts 

of the program by merging all sections of the same type into one section. The code and data 

section also are adjusted so they point to the correct runtime addresses.

• Symbol Resolution: A program is made up of multiple subprograms; reference of one 

subprogram to another is made through symbols. A linker's job is to resolve the reference by 

noting the symbol's location and patching the caller's object code.(3)

In the next part, I’ll describe the full relocation and symbol 

resolution structure.

Linkers and loaders perform 

various related but conceptually 

different tasks:



Creating a Process (borrow from index 5 of ref.)



An ELF file provides 2 views on the data, 
contains(4)

Loading View Linking View

Only the ELF header 

has a fixed position 

in the file. The 

flexibility of the ELF 

format requires no 

specified order for 

header tables, 

sections or segments.



ELF Views

Simplified version of 

the structure of an 

ELF-file.(2) 



Write Sample Program

I’ll write a test 

program with c 

languages and 

make elf format.

Then I decided to 

analyze it.



ELF Header

The ELF file 

header tells where 

program header 

table & section 

header table are.

-> gcc 484_test.c –o 

484_test



ELF Header Inspecting…

Padding Bytes. 

These bytes are 

unused and are 

always set to 0



ELF Header Inspecting…

 Class: 

❖ x64 - > (=02) 

❖ x32 -> (=01)

 Data:

❖ LSB -> (=01)

❖MSB -> (=02)

 Version:

❖Current Version -> (=01)

❖ Invalid Version -> (=02)



ELF Header Inspecting…

 OS/ ABI : An Application Binary Interface (ABI) is the 
interface between two binary program modules that 
work together. An ABI is a contract between pieces of 
binary code defining the mechanisms by which 
functions are invoked and how parameters are passed 
between the caller and callee.

 ABI Version: Show which version of ABI used.



ELF Header Inspecting…

 Type: 

❖Relocation File -> (=01)

❖Executable File -> (=02)

❖Shared Object File -> (=03)

❖Core File -> (=04)

 Machine: denotes the architecture that the binary is 

intended to run on.



ELF Header Inspecting…

 Entry Point Address: where does the program start?

 Start of Program Header: Identifies the start of the 

program headers with bytes into the ELF-file.

 Start of Section Header: Identifies the start of the section 

headers with bytes into the ELF-file. 

 Size of Program Header: Identifies the size of the program 

headers that is in the ELF-file.



ELF Header Inspecting…

 Size of section headers: Identifies the size of the section 

headers that is in the ELF-file.

 Number of program headers: Identifies how many 

program headers there is in the ELF-file.

 Number of section headers: Identifies how many section 

headers there is in the ELF-file.(2)



Run The Program

Run the program and

auditd log:

Syscall - > execve

Interpreter Call

Path of Binary execution

Syscall - > execve



Type of ELF Files

• Binary executable (ET_EXEC)

• Runnable program, must have Segments

• Object files (or relocatable objects (.o), ET_REL) 

• Links with other object files, must have sections.

• Shared Library (.so, ET_DYN) 

• Links with other object files/executables.

• Has both segments and sections.

• Core Dump(ET_CORE)

• Generated when program receives SIGABRT.

• Has no sections, has segments(PT_LOAD/ PT_Notes)



Define Segment and Section

Sections comprise all information needed for linking a target object file in order to 

build a working executable. In the other word, Sections represent the smallest 

indivisible units that can be processed within an ELF file. sections perspective of a 

linker.

Segments, which are commonly known as Program Headers, break down the structure 

of an ELF binary into suitable chunks to prepare the executable to be loaded into 

memory.(borrow from Intezer web site) 

Segments are a collection of sections that represent the smallest individual units that 

can be mapped to a memory image by the runtime linker.

Sections hold the bulk of object file information for the linking view:

instructions, data, symbol table, relocation information, and so on.



Program Header Table

 A program header table is an array of program headers 
that defines the memory layout of a program at runtime.

 The program header shows the segments used at run-

time, and tells the system how to create a process image. 

An ELF-file can consist of zero or more segments. The 

kernel can access the segments and map them into a 

virtual address space by using mmap system calls. (6)



The LOAD directives determinate what 

parts of the ELF file get mapped into 

program memory.

1

2

3

1

2
INTERP specifies location and size of an 

interpreter for linking runtime library.

3

PHDR specifies the location and size of the 

program header table itself, both in the file 

and in the memory image of the program.

4

4 The DYNAMIC directives dynamic linking 

information.
5

5 The NOTE indicate of auxiliary information.

Next Part…



GCC uses this table to find the appropriate 

handler for an exception.

1

2

3

1

2 whether we need an executable stack;

permission of the stack in memory.

3
which part of the memory should be 

read-only after applying dynamic 

relocations



PHT Inspecting…

❑ Load Segment appear twice. Why?

First LOAD has read and execute permission. Therefore, this segment running text 

segment. Because only text segment contain read-only instruction with read-only 

data section (go to next page for more detailed) .

Second LOAD has read and write permission. So this is a data segment. Notice that 

this segment can not executable.



PHT Inspecting…

 All segments contains sections. 

Index of Segments. In other word, The first number is the index of a program header in 

program header table, and the remaining text is the list of all sections within a segment.

Look at the number 2 index, this section belonging to First LOAD segment. So, first LOAD 

segment contains the number 2 index sections. 



Section Header Table

 The section headers define all the sections within an ELF-

file. In the section header the data is linked and 

relocated. The section header table describes zero or 

more sections that are followed by data which are 

referred to by entries from the program header table, or 

section header table.(6)



Some Sections…

Sections: 

 .text -> contains executable code, which will be packed 

into a segment with read and execute access rights. Which 

is only loaded once, as the contents will not change. 

 .rodata -> Initialized data with read access rights only

 .data -> Initialized data with read/write access rights 

 .bss -> initialized data with read/write access rights(6)





SHT Inspecting …

Index = 1 PROGBITS = which 

means this section is 

part of the program.

Address = means 

the program is 

loaded at this virtual 

memory address at 

runtime. 

Offset

EntSize = is 0, which 

means this section 

does not have any 

fixed-size entry.

Flag = are A (Allocatable) 

which means this section 

consumes memory at runtime.

Link and Info are 0 and 0 means this 

section links to no section or entry in any 

table

Alignment



Reference

1 - Ubuntu linux -> /usr/include/elf.h

2 - Espen, Amar & Abdi, “Automated dynamic malware analysis of ELF-files”

3 - https://www.linuxjournal.com/article/6463

4 - https://refspecs.linuxfoundation.org/elf/elf.pdf

5 - https://web.stanford.edu/~ouster/cs111-spring21/all_lectures/

6 - A. Dennis, "Practical binary analysis : build your own Linux tools for binary", No Starch 
Press, 2019.

7 - https://en.wikipedia.org/wiki/Executable_and_Linkable_Format



To be Continued …


