LiInux Forensics
Binary analysis — Part2

Executable and Linkable Format

Approach




Seyyed Hossein Kamali

(dTeam Lead, Cyber Threat Defense Centre@ Dotin

' AMain focus on hunting badness

{ )



Executable and Linkable
Format



Why Learning ELF Filese

Why should we know about ELF files?

ELF file analysis used by: & Blue Teamers

NG

“ Incident Response

“ Digital Forensics

‘0

* Malware Researchers

‘0

» Red Teamers



Definition

ELF (Executable and Linkable Format ) formerly named Extensible Linking Format

standard file format for executable files, object code, shared libraries, and core

dumps. First intfroduced with Unix system and is now standard executable file format

on Linux, FreeBSD and any other device like micro controller and many other thinks.
By design, the ELF format is flexible, extensible, and cross-platform. For instance it
supports different endiannesses and address sizes so it does not exclude any

parficular central processing unit (CPU) or instruction set architecture.(7)



ELF Extension

ELF known file extensions

.axf§ bin elf .0 g.prx puff ko %.mod g.so




Anatomy of an Executable File



Each operating systems have two

fundamental abstractions

Processes

processes can be viewed as
a dynamic representation of

resources.

Binary or executable files can be
viewed as static representation of

resources



Definition

The process of transforming the static
object (binary executable files) in a
dynamic object (process) is called
loading.



ELF files are used by Linker and Loader

two tools

Linker: Linking Is the process of combining various pieces of code and data
together to form a single executable that can be loaded in memory. Linking can be
done at compile time, at load time (by loaders) and also at run time (by application

programs).

Loader: The loader is a program called execve, which loads the code and data of
the executable object file into memory and then runs the program by jumping to
the first instruction.(3)

O In real environments, with dynamic linking, loading may require relocation. Why?

= Because, If the file is dynamically linked it has to be linked again with all the
shared libraries it depends on.

In the next part, I'll describe the full relocation and symbol
resolution structure.



Linkers and loaders perform

various related but conceptually Llﬂ ker d ﬂd Loader

different tasks:

Program Loading: This refers to copying a program image from hard disk to the main
memory in order to put the program in a ready-to-run state. In some cases, program loading
also might involve allocating storage space or mapping virtual addresses to disk pages.

Relocation: Compilers and assemblers generate the object code for each input module with a
starting address of zero. Relocation is the process of assigning load addresses to different parts
of the program by merging all sections of the same type into one section. The code and data
section also are adjusted so they point to the correct runtime addresses.

Symbol Resolution: A program is made up of multiple subprograms; reference of one
subprogram to another is made through symbols. A linker's job is to resolve the reference by
noting the symbol's location and patching the caller's object code.(3)

In the next part, I'll describe the full relocation and symbol
resolution structure.



Creatfing d ProCess (porow from index 5 of ref,

Source Assembly Object Executable
Code Code File

10101010

- 10101010

10101010

— - - =" | 10101010
— 10101010

—~ il 10101010

X.C gccC X.S as X.0

10101010 10101010
— 10101010 10101010
- o | 10101010 10101010 - - ﬁ
- 10101010 10101010 OS
10101010 10101010
— - 10101010 10101010

V.S as y.0 Id a.out Data

10101010
S 10101010
-— — - 10101010

*| Stack

10101010
10101010
10101010

Z.S as Z.0

Compiler Assembler Linker Loader



An ELF file provides 2 views on the data,

containsu)

ELF Header ELF Header
Program Header Table Only the ELF header Program Header Table
has a fixed position optional
Loading View _ _ P Section 1 Linking View
Segment 1 In the file. The

» flexibility of the ELF - -
Segment 2 format requires no Sectionn
specified order for o

header tables,
sections or segments.

Section Header Table Section Header Table

optional




ELF Header File Data

Simplified version of |5

the structure of an ection header table
ELF-file.(2)




Write Sample Program

I'll write a test
program with ¢
languages and
make elf format.
Then | decided to
analyze if.

#include <stdio.h>
#include <string.h>

int main (int argc, char **argv){
char buf[128];
if(argc < 2) return 1;
strcpy(buf, argv[l]);
printf("%s\n", buf);
return 0;

}



ELF Header

-> gcc 484_test.c —o
484 _test

The ELF file

header tells where
program header
table & section
header table are.

# readelf -h 484b_test

ELF Header:
Magic: 7f 45 4c 46 02 01 ©1 OO OO OO OO 0O OO 0O 0O O
Class: ELF64
DEY- 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: (%
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: ox1
Entry point address: ex5fe

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

64 (bytes into file)
6544 (bytes into file)
Ox0

64 (bytes)

56 (bytes)

9

64 (bytes)

29

28




ELF Header Inspecting...

ELF Header:
Magic: 7T 45 4¢c 46 02 91 O1 00 00 00 00 00 00 00 00 00

root@slingshot:/home# hexdump -C 484b test I Padding Bytes.
00000000 7f 45 4c 46 |.ELF These bytes are
unused and are

‘ always setf to O

root@slingshot:/home# od -t x1 -c 484b_test

PR 7f 45 4c 46
177 E L F



ELF Header Inspecting...

o Class:
< Xx64 - > (=02)
<« x32 -> (=01)

o Data:
< LSB -> (=01)
<« MSB -> (=02)
O Version:

< Current Version -> (=01)
< Invalid Version -> (=02)



ELF Header Inspecting...

o OS/ ABI : An Application Binary Interface (ABI) is the
INnterface between two binary program modules that
work together. An ABI is a contract between pieces of
binary code defining the mechanisms by which
functions are invoked and how parameters are passed
between the caller and callee.

O ABI Version: Show which version of ABI used.



ELF Header Inspecting...

O Type:
<+ Relocation File -> (=01)
<+ Executable File -> (=02)
<+ Shared Object File -> (=03)
<« Core File -> (=04)

O Machine: denotes the architecture that the binary is
InNfended to run on.



ELF Header Inspecting...

O Entry Point Address: where does the program starte

o Start of Program Header: Identifies the start of the
program headers with bytes into the ELF-file.

o Start of Section Header: Identifies the start of the section
headers with bytes intfo the ELF-file.

O Size of Program Header: Identifies the size of the program
headers that is in the ELF-file.



ELF Header Inspecting...

O Size of section headers: |[dentifies the size of the section

O

O

neaders that is in the ELF-file.

Number of program headers: [dentities how many
orogram headers there is in the ELF-file.

Number of section headers: Identifies how many section

neaders there is in the ELF-file.(2)



Run The Program

Run the program and

root@slingshot:/home# ./484b test Hello World
auditd log:

Hello_ World

Syscall - > execve — Syscall - > execve

tyffe=SYSCALL msg=audit(1655365953.222:301): arch=c000003e syscall=59 success=yes exit=0 a®=564c5
5133010 al=564c¢55135320 a2=564c550afa50 a3=8 items=2 ppid=23566 pid=23769 auid=1001 uid=0 gid=0
euj§d=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsl ses=50 comm="484b_test" exe="/home/484b_tes
t" jkey=(null)

type=EXECVE msg=audit(1655365953.222:301): argc=2 a0="./484b_test" al="Hello_World"

type=CWD msg=audit(1655365953.222:301): cwd="/home" Path of Binary execution

type=PATH msg=audit(1655365953.222:301): item=0 name="./484b test"™ inode=3426972 dev=08:03 mode=
0100755 ouid=0 ogid=0 rdev=00:00 nametype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000

cap_fe=0 cap_fver=0 - > Interpreter Call
type=PATH msg=audit(1655365953.222:301): item=1 name="/1ib64/1d-1linux-x86-64.50.2" inode=6946839

dev=08:03 mode=0100755 ouid=0 o0gid=0 rdev=00:00 nametype=NORMAL cap_tp=0000000000000000 cap_ fi=
0000000000000000 cap_fe=0 cap_fver=0

type=PROCTITLE msg=audit(1655365953.222:301): proctitle=2E2F343834625F746573740048656C6C6F5F576F
726C64




Type of ELF Files

« Binary executable (ET_EXEC)

Runnable program, must have Segments
« Objectfiles (or relocatable objects (.0), ET_REL)

- Links with other object files, must have sections.
« Shared Library (.so, ET_DYN)

- Links with other object files/executables.

i'll discuss and analysis
all type of elf files in nexi

parts.

 Has both segments and sections.
« Core Dump(ET_CORE)
« Generated when program receives SIGABRT.

 Has no sections, has segments(PT_LOAD/ PT_Notes)



Define Segment and Section

Sections comprise all information needed for linking a target object file in order to
build a working executable. In the other word, Sections represent the smallest
Indivisible units that can be processed within an ELF file. sections perspective of a
linker.

Segments, which are commonly known as Program Headers, break down the structure
of an ELF binary into suitable chunks to prepare the executable to be loaded into
memory.(borrow from Intezer web site)

Segments are a collection of sections that represent the smallest individual units that
can be mapped to a memory image by the runtime linker.

Sections hold the bulk of object file information for the linking view:
Instructions, data, symbol table, relocation information, and so on.



Program Header Table

O A program header table is an array of program headers

that defines the memory layout of a program at runtime.

O The program header shows the segments used at run-

An EL
kerne
virfua

time, and tells the system how to create a process image.

--file can consist of zero or more segments. The
can access the segments and map them into a

address space by using mmap system calls. (6)



I VUL Lilipg2iiVL.. s T

ST T wdddcdld

T e TOTUY W2 W

Elf file type is DYN (Shared object file)

Entry point @x5fe@

There are 9 program headers, starting at offset 64

Next Part...

Program Headers:

PHDR specifies the location and size of the
€@ program header table itself, both in the file
and in the memory image of the program.

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0Xx0000000000000040 exeeeeeeeeeeeeeei 0Xx0000000000000040 INTERP specifies location and size of an
0X00000000000001F8 OXx0DPAOLPROVRROLFE R ox8 9 . R : .
QINTERP 0x0000000000000238 0x000000000000023k 0x0000PE0EERE00238 interpreter for linking runtime library.
0x000000000000001c ©x200000000000001F R ox1
[Requesting program interpreter: |/1ib64/1d-1inux-x86-64.s0.2] . . .
'3 0x0000000000000000 0x0000000000000000 Ox0000000000000000 © The LOAD directives determinate what
0Xx0000000000000948 0x0000000000000948 R E  0x200000 oarts of the ELF file get mapped into
LOAD 0X0000000000000da8 Ox0PPP0LPR0V200das8 OXx0POPPERRV200das
0x0000000000000268 ©OXx0000000000000270 RW 0x200000 Program memaory.
eDYNAMIC 0Xx0000000000000db8 Ox0000000000200db8 OXx0000PE000200db8
0Xx00000000000001F0 OX00P000P0000001F0 RW ox8
QNOTE 0Xx0000000000000254 OXx00PP00P000000254 OXx0000PE00000254 @ The DYNAMIC directives dynamic linking
0Xx0000000000000044 OXx0000000000000044 R ox4 information
GNU_EH_FRAME  ©x0000000000000804 0x0000000000000804 Ox00000EV000000804 :
0x000000000000003c OXx00PP00PR00R0003c R ox4
GNU_STACK 0Xx0000000000000000 OXx00PROLPRO0RE0000 OXx0OOAEEEAEEAE0R0
0Xx0000000000000000 PX00PR00PO00R00000 RW ox10 T e - -
GNU_RELRO 0Xx0000000000000da8 Px00PROLRR0V200da8 OXx0OOAELERRV200da8s e The NOTE indicate of auxiliary information.
0Xx0000000000000258 OXx000000PR00V00258 R ox1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got

xt .fini .rodata .eh_frame_hdr .eh_frame
03 .init_array .fini_array .dynamic .got .data .bss



root@slingshot:/home# readelf -1 484b_test

Elf file type is DYN (Shared object file)
Entry point 0x5f0
There are 9 program headers, starting at offset 64

Program Headers:

Type
PHDR

INTERP

Offset

FileSiz
0x0000000000000040
0x0000000000000118
0x0000000000000238
0x000000000000001c

VirtAddr PhysAddr

MemSiz Flags Align
0x0000000000000040 ©x0000000000000040
0x00000000000001f8 R ox8
0x0000000000000238 0x0000000000000238
0x000000000000001c R ox1

[Requesting program interpreter: /1ib64/1d-linux-x86-64.s0.2]

LOAD

LOAD

DYNAMIC

0x0000000000000000
0x0000000000000948
0x0000000000000da8
0x0000000000000268
0x0000000000000db8
0x000000000000010
0x0000000000000254
0x0000000000000044
0x0000000000000804
0x000000000000003 ¢
0x0000000000000000
0x0000000000000000
0x0000000000000da8
0x0000000000000258

Section to Segment mapping:
Segment Sections...

00
01
02

.interp

.interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got

0x0000000000000000 0x00VVVVVVYV0
0x0000000000000948 R E 0x200000
0x0000000000200da8 ©x0000000000200da8
0x0000000000000270 RW 9x200000
0x0000000000200db8 0x0000000000200db8
0x00000000000001f0 RW ox8
0x0000000000000254 9x0000000000000254
0x0000000000000044 R ox4
0x0000000000000804 0x0000000000000804
0x000000000000003c R ox4
0x0000000000000000 0x00000VVVV000
0x0000000000000000 RW ox10
0x0000000000200da8 0x0000000000200da8
0x0000000000000258 R ox1

xt .fini .rodata .eh_frame_hdr .eh_frame
.init_array .fini_array .dynamic .got .data .bss

o3

GCC uses this table to find the appropriate
handler for an exception.

whether we need an executable stack;
permission of the stack in memory.

which part of the memory should be
read-only after applying dynamic
relocations



PHT Inspecting...

LOAD 0x0000000000000000 X000V Ox00000VVVV0VD
Ox0000000000000948 Ox0000000000000948 R E 0x200000

LOAD 0x0000000000000da8 Ox0000VVVVV200da8 Ox000VVVVV200das8
0x0000000000000268 Ox0000000000000270 RW 0x200000

O Load Segment appear twice. Why?

First LOAD has read and execute permission. Therefore, this segment running text
segment. Because only text segment contain read-only instruction with read-only
data section (go to next page for more detailed) .

Second LOAD has read and write permission. So this is a data segment. Notice that
this segment can not executable.



PHT Inspecting...

O All segments contains sections.

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .tex
.rodatg .eh frame hdr .eh frame

e3 .init_array .fini_array .dynamic .got .data .bss

04 .dynamic

e5 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

o7

es8 .init_array .fini_array .dynamic .got

Index of Segments. In other word, The first number is the index of a program header in
program header table, and the remaining text is the list of all sections within a segment.

Look at the number 2 index, this section belonging to First LOAD segment. So, first LOAD
segment contains the number 2 index sections.



Section Header Table

O The section headers define all the sections within an ELF-
file. In the section header the data is linked and
relocated. The section header table describbes zero or
more sections that are followed by data which are
referred to by entries from the program header table, or
section header table.(6)



Some Sections...

Sections:

O .text -> contains executable code, which will be packed
INto a segment with read and execute access rights. Which
Is only loaded once, as the contents will not change.

o .rodata -> Initialized data with read access rights only
o .data -> Initialized data with read/write access rights
0 .bss -> initialized data with read/write access rights(6)



root@slingshot:/home# readelf -W -S 484b_test
There are 29 section headers, starting at offset 0x1990:

Section Headers:

[Nr] Name Type

[ O] NULL

[ 1] .interp PROGBITS
[ 2] .note.ABI-tag NOTE

[ 3] .note.gnu.build-id NOTE

[ 4] .gnu.hash GNU_HASH
[ 5] .dynsym DYNSYM

[ 6] .dynstr STRTAB

[ 7] .gnu.version VERSYM

[ 8] .gnu.version_r VERNEED
[ 9] .rela.dyn RELA
[10] .rela.plt RELA
[11] .init PROGBITS
[12] .plt PROGBITS
[13] .plt.got PROGBITS
[14] .text PROGBITS
[15] .fini PROGBITS
[16] .rodata PROGBITS

Address

0000000000000274 000274 000024 00

0000000000000298
00000000000002b8
0000000000000390
0000000000000434
0000000000000448
0000000000000478
0000000000000538
0000000000000580
00000000000005a0
00000000000005€0
0000000000000510
00000000000007 4
0000000000000800

Off

000298
0002b8
000390
000434
000448
000478
000538
000580
0005a0
0005e0
000510
00074
000800

Size

00001c
0000d8
0000a4
000012
000030
0000c0o
000048
000017
000040
000008
000202
000009
000004

ES F1lg Lk Inf Al
0000000000000000 00VVVO 000000 00
0000000000000238 000238 00001c 00
0000000000000254 000254 000020 00

00
18
00
02
00
18
18
00
10
08
00
00
04

> >

A

XEEXR&Brrree>

>
=

OO0

OO OO UVTITUIOAUTIO® o U

0

0

0
%)

O OO OOONOFROORO®

=

=
PR OOCOOGO BA~OCWODWONIE 0 0

(%]
1
4

4



SHT Inspecting

Flag = are A (Allocatable)
which means this section

Offset consumes m ry at runtime.
Section Headers: ‘ e‘p

[Nr] Name Type Address off Size ES Flg Lk Imc Al
[ 0] NULL 0000000000000000 000000 00RO 00
[ 1] .interp PRO?ITS eeeeeeeﬁeeeeas 000238 00001cC 2
Index =1 PROGBITS = which Address = means EntSize = is 0, which [JAlignment

means this section is the program is means this section
part of the program. loaded at this virtual does not have any
memory address at fixed-size enftry.

runtime.

Link and Info are 0 and 0 means this
section links to no section or entry in any
table



Reference

1 - Ubuntu linux -> /usr/include/elf.h

2 - Espen, Amar & Abdi, “Automated dynamic malware analysis of ELF-files”
3 - https://www.linuxjournal.com/article/6463

4 - https://refspecs.linuxfoundation.org/elf/elf.pdf

5 - https://web.stanford.edu/~ouster/cs111-spring21/all lectures/

6 - A. Dennis, "Practical binary analysis : build your own Linux tools for binary", No Starch
Press, 2019.

7 - https://en.wikipedia.org/wiki/Executable _and_Linkable Format




To be Continued ...



